优化阳极/电解质界面的电解质工程,实现卓越的锌离子水电池:综述

IF 4.7 1区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING Transactions of Nonferrous Metals Society of China Pub Date : 2024-10-01 DOI:10.1016/S1003-6326(24)66598-2
Hua-ming YU, Dong-ping CHEN, Li-jin ZHANG, Shao-zhen HUANG, Liang-jun ZHOU, Gui-chao KUANG, Wei-feng WEI, Li-bao CHEN, Yue-jiao CHEN
{"title":"优化阳极/电解质界面的电解质工程,实现卓越的锌离子水电池:综述","authors":"Hua-ming YU,&nbsp;Dong-ping CHEN,&nbsp;Li-jin ZHANG,&nbsp;Shao-zhen HUANG,&nbsp;Liang-jun ZHOU,&nbsp;Gui-chao KUANG,&nbsp;Wei-feng WEI,&nbsp;Li-bao CHEN,&nbsp;Yue-jiao CHEN","doi":"10.1016/S1003-6326(24)66598-2","DOIUrl":null,"url":null,"abstract":"<div><div>Aqueous zinc-ion batteries (AZIBs) are promising candidates for the large-scale energy storage systems due to their high intrinsic safety, cost-effectiveness and environmental friendliness. However, issues such as dendrite growth, hydrogen evolution reaction, and interfacial passivation occurring at the anode/electrolyte interface (AEI) have hindered their practical application. Constructing a stable AEI plays a key role in regulating zinc deposition and improving the cycle life of AZIBs. The fundamentals of AEI and the challenges faced by the Zn anode due to unstable interfaces are discussed. A comprehensive summary of electrolyte regulation strategies by electrolyte engineering to achieve a stable Zn anode is provided. The effectiveness evaluation techniques for stable AEI are also analyzed, including the interfacial chemistry and surface morphology evolution of the Zn anode. Finally, suggestions and perspectives for future research are offered about enabling a durable and stable AEI via electrolyte engineering, which may pave the way for developing high-performance AZIBs.</div></div>","PeriodicalId":23191,"journal":{"name":"Transactions of Nonferrous Metals Society of China","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrolyte engineering for optimizing anode/electrolyte interface towards superior aqueous zinc-ion batteries: A review\",\"authors\":\"Hua-ming YU,&nbsp;Dong-ping CHEN,&nbsp;Li-jin ZHANG,&nbsp;Shao-zhen HUANG,&nbsp;Liang-jun ZHOU,&nbsp;Gui-chao KUANG,&nbsp;Wei-feng WEI,&nbsp;Li-bao CHEN,&nbsp;Yue-jiao CHEN\",\"doi\":\"10.1016/S1003-6326(24)66598-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Aqueous zinc-ion batteries (AZIBs) are promising candidates for the large-scale energy storage systems due to their high intrinsic safety, cost-effectiveness and environmental friendliness. However, issues such as dendrite growth, hydrogen evolution reaction, and interfacial passivation occurring at the anode/electrolyte interface (AEI) have hindered their practical application. Constructing a stable AEI plays a key role in regulating zinc deposition and improving the cycle life of AZIBs. The fundamentals of AEI and the challenges faced by the Zn anode due to unstable interfaces are discussed. A comprehensive summary of electrolyte regulation strategies by electrolyte engineering to achieve a stable Zn anode is provided. The effectiveness evaluation techniques for stable AEI are also analyzed, including the interfacial chemistry and surface morphology evolution of the Zn anode. Finally, suggestions and perspectives for future research are offered about enabling a durable and stable AEI via electrolyte engineering, which may pave the way for developing high-performance AZIBs.</div></div>\",\"PeriodicalId\":23191,\"journal\":{\"name\":\"Transactions of Nonferrous Metals Society of China\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of Nonferrous Metals Society of China\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1003632624665982\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of Nonferrous Metals Society of China","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1003632624665982","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

锌离子水电池(AZIBs)具有内在安全性高、成本效益高和环境友好等优点,是大规模储能系统的理想候选材料。然而,阳极/电解质界面(AEI)上出现的枝晶生长、氢进化反应和界面钝化等问题阻碍了它们的实际应用。构建稳定的 AEI 对调节锌沉积和提高 AZIB 的循环寿命起着关键作用。本文讨论了 AEI 的基本原理以及锌阳极因界面不稳定而面临的挑战。全面总结了通过电解质工程实现稳定锌阳极的电解质调节策略。此外,还分析了稳定 AEI 的效果评估技术,包括锌阳极的界面化学和表面形态演变。最后,还就如何通过电解质工程实现持久稳定的 AEI 提出了建议和未来研究展望,为开发高性能 AZIB 铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrolyte engineering for optimizing anode/electrolyte interface towards superior aqueous zinc-ion batteries: A review
Aqueous zinc-ion batteries (AZIBs) are promising candidates for the large-scale energy storage systems due to their high intrinsic safety, cost-effectiveness and environmental friendliness. However, issues such as dendrite growth, hydrogen evolution reaction, and interfacial passivation occurring at the anode/electrolyte interface (AEI) have hindered their practical application. Constructing a stable AEI plays a key role in regulating zinc deposition and improving the cycle life of AZIBs. The fundamentals of AEI and the challenges faced by the Zn anode due to unstable interfaces are discussed. A comprehensive summary of electrolyte regulation strategies by electrolyte engineering to achieve a stable Zn anode is provided. The effectiveness evaluation techniques for stable AEI are also analyzed, including the interfacial chemistry and surface morphology evolution of the Zn anode. Finally, suggestions and perspectives for future research are offered about enabling a durable and stable AEI via electrolyte engineering, which may pave the way for developing high-performance AZIBs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.40
自引率
17.80%
发文量
8456
审稿时长
3.6 months
期刊介绍: The Transactions of Nonferrous Metals Society of China (Trans. Nonferrous Met. Soc. China), founded in 1991 and sponsored by The Nonferrous Metals Society of China, is published monthly now and mainly contains reports of original research which reflect the new progresses in the field of nonferrous metals science and technology, including mineral processing, extraction metallurgy, metallic materials and heat treatments, metal working, physical metallurgy, powder metallurgy, with the emphasis on fundamental science. It is the unique preeminent publication in English for scientists, engineers, under/post-graduates on the field of nonferrous metals industry. This journal is covered by many famous abstract/index systems and databases such as SCI Expanded, Ei Compendex Plus, INSPEC, CA, METADEX, AJ and JICST.
期刊最新文献
Microstructural evolution and deformation mechanisms of superplastic aluminium alloys: A review Phase transformation in titanium alloys: A review Electrolyte engineering for optimizing anode/electrolyte interface towards superior aqueous zinc-ion batteries: A review Strengthening mechanism of T8-aged Al−Cu−Li alloy with increased pre-deformation Modeling of recrystallization behaviour of AA6xxx aluminum alloy during extrusion process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1