可持续的镁回收利用:通过塑性变形辅助固态回收(SSR)实现晶粒细化的启示

IF 15.8 1区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING Journal of Magnesium and Alloys Pub Date : 2024-10-01 DOI:10.1016/j.jma.2024.10.016
E. Taherkhani , M.R. Sabour , G. Faraji
{"title":"可持续的镁回收利用:通过塑性变形辅助固态回收(SSR)实现晶粒细化的启示","authors":"E. Taherkhani ,&nbsp;M.R. Sabour ,&nbsp;G. Faraji","doi":"10.1016/j.jma.2024.10.016","DOIUrl":null,"url":null,"abstract":"<div><div>Magnesium, the lightest structural metal, is increasingly adopted in various industries, particularly automotive and aerospace, underscores the economic importance of magnesium due to its high specific strength, stiffness, and excellent damping properties. However, the primary production of magnesium is highly energy-intensive and environmentally challenging. Solid-state recycling via plastic deformation techniques offers a promising alternative to manufacturing ultrafine-grained magnesium samples with superior characteristics. Given the lack of reviews on the mechanisms of grain refinement during the solid-state recycling of magnesium and its alloys, this paper addresses this gap by offering detailed insights. Through an extensive review of relevant literature, the current paper highlights how plastic deformation techniques facilitate grain refinement during the solid-state recycling of magnesium chips and wastes. In this regard, a grain refinement mechanism during SSR of Mg and its alloys is proposed by the authors, to guide future advancements in sustainable magnesium recycling technologies. This will clarify the benefits of solid-state recycling over traditional methods, such as higher metal yields and better mechanical properties.</div></div>","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"12 10","pages":"Pages 3947-3966"},"PeriodicalIF":15.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustainable magnesium recycling: Insights into grain refinement through plastic deformation-assisted solid-state recycling (SSR)\",\"authors\":\"E. Taherkhani ,&nbsp;M.R. Sabour ,&nbsp;G. Faraji\",\"doi\":\"10.1016/j.jma.2024.10.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Magnesium, the lightest structural metal, is increasingly adopted in various industries, particularly automotive and aerospace, underscores the economic importance of magnesium due to its high specific strength, stiffness, and excellent damping properties. However, the primary production of magnesium is highly energy-intensive and environmentally challenging. Solid-state recycling via plastic deformation techniques offers a promising alternative to manufacturing ultrafine-grained magnesium samples with superior characteristics. Given the lack of reviews on the mechanisms of grain refinement during the solid-state recycling of magnesium and its alloys, this paper addresses this gap by offering detailed insights. Through an extensive review of relevant literature, the current paper highlights how plastic deformation techniques facilitate grain refinement during the solid-state recycling of magnesium chips and wastes. In this regard, a grain refinement mechanism during SSR of Mg and its alloys is proposed by the authors, to guide future advancements in sustainable magnesium recycling technologies. This will clarify the benefits of solid-state recycling over traditional methods, such as higher metal yields and better mechanical properties.</div></div>\",\"PeriodicalId\":16214,\"journal\":{\"name\":\"Journal of Magnesium and Alloys\",\"volume\":\"12 10\",\"pages\":\"Pages 3947-3966\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnesium and Alloys\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213956724003438\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213956724003438","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

镁是最轻的结构金属,因其高比强度、刚度和出色的阻尼特性,越来越多地被各行各业所采用,尤其是汽车和航空航天业。然而,镁的初级生产是高能耗和环境挑战。通过塑性变形技术进行固态回收,为制造具有优异特性的超细粒度镁样品提供了一种很有前景的替代方法。鉴于缺乏对镁及其合金固态回收过程中晶粒细化机制的综述,本文通过提供详细的见解来填补这一空白。通过广泛查阅相关文献,本文重点介绍了塑性变形技术如何在镁屑和废料的固态回收过程中促进晶粒细化。为此,作者提出了镁及其合金固态回收过程中的晶粒细化机制,以指导未来可持续镁回收技术的发展。这将阐明固态回收与传统方法相比的优势,如更高的金属产量和更好的机械性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sustainable magnesium recycling: Insights into grain refinement through plastic deformation-assisted solid-state recycling (SSR)
Magnesium, the lightest structural metal, is increasingly adopted in various industries, particularly automotive and aerospace, underscores the economic importance of magnesium due to its high specific strength, stiffness, and excellent damping properties. However, the primary production of magnesium is highly energy-intensive and environmentally challenging. Solid-state recycling via plastic deformation techniques offers a promising alternative to manufacturing ultrafine-grained magnesium samples with superior characteristics. Given the lack of reviews on the mechanisms of grain refinement during the solid-state recycling of magnesium and its alloys, this paper addresses this gap by offering detailed insights. Through an extensive review of relevant literature, the current paper highlights how plastic deformation techniques facilitate grain refinement during the solid-state recycling of magnesium chips and wastes. In this regard, a grain refinement mechanism during SSR of Mg and its alloys is proposed by the authors, to guide future advancements in sustainable magnesium recycling technologies. This will clarify the benefits of solid-state recycling over traditional methods, such as higher metal yields and better mechanical properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Magnesium and Alloys
Journal of Magnesium and Alloys Engineering-Mechanics of Materials
CiteScore
20.20
自引率
14.80%
发文量
52
审稿时长
59 days
期刊介绍: The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.
期刊最新文献
An experimental and theoretical investigation of the enhanced effect of Ni atom-functionalized MXene composite on the mechanism for hydrogen storage performance in MgH2 Achieving ultrahigh anodic-efficiency and energy-density Mg–air battery via the discharge product film design of bulk Mg anode Achieving strength-ductility synergy in Mg-1.1Gd-0.6Zn-0.3Mn alloy by regulating precipitation behavior via stress aging strategy The origin of ultrahigh-strength in GWZ1021K alloy fabricated by wire-arc directed energy deposition A machine learning potential for simulation the dislocation behavior of magnesium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1