Hoang Thi Yen, Vuong Tri Tiep, Van-Phuc Hoang, Quang-Kien Trinh, Hai-Duong Nguyen, Nguyen Trong Tuyen, Guanghao Sun
{"title":"利用改进的 Pan-Tompkins 算法进行基于雷达的非接触式心跳检测。","authors":"Hoang Thi Yen, Vuong Tri Tiep, Van-Phuc Hoang, Quang-Kien Trinh, Hai-Duong Nguyen, Nguyen Trong Tuyen, Guanghao Sun","doi":"10.1088/2057-1976/ad8c48","DOIUrl":null,"url":null,"abstract":"<p><p><i>Background.</i>Using radar for non-contact measuring human vital signs has garnered significant attention due to its undeniable benefits. However, achieving reasonably good accuracy in contactless measurement senarios is still a technical challenge.<i>Materials and methods.</i>The proposed method includes two stages. The first stage involves the process of datasegmentation and signal channel selection. In the next phase, the raw radar signal from the chosen channel is subjected to modified Pan-Tompkins.<i>Results.</i>The experimental findings from twelve individuals demonstrated a strong agreement between the contactless radar and contact electrocardiography (ECG) devices for heart rate measurement, with correlation coefficient of 98.74 percentage; and the 95% limits of agreement obtained by radar and those obtained by ECG were 2.4 beats per minute.<i>Conclusion.</i>The results showed high agreement between heart rate calculated by radar signals and heart rate by electrocardiograph. This research paves the way for future applications using non-contact sensors to support and potentially replace contact sensors in healthcare.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":"11 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radar-based contactless heart beat detection with a modified Pan-Tompkins algorithm.\",\"authors\":\"Hoang Thi Yen, Vuong Tri Tiep, Van-Phuc Hoang, Quang-Kien Trinh, Hai-Duong Nguyen, Nguyen Trong Tuyen, Guanghao Sun\",\"doi\":\"10.1088/2057-1976/ad8c48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Background.</i>Using radar for non-contact measuring human vital signs has garnered significant attention due to its undeniable benefits. However, achieving reasonably good accuracy in contactless measurement senarios is still a technical challenge.<i>Materials and methods.</i>The proposed method includes two stages. The first stage involves the process of datasegmentation and signal channel selection. In the next phase, the raw radar signal from the chosen channel is subjected to modified Pan-Tompkins.<i>Results.</i>The experimental findings from twelve individuals demonstrated a strong agreement between the contactless radar and contact electrocardiography (ECG) devices for heart rate measurement, with correlation coefficient of 98.74 percentage; and the 95% limits of agreement obtained by radar and those obtained by ECG were 2.4 beats per minute.<i>Conclusion.</i>The results showed high agreement between heart rate calculated by radar signals and heart rate by electrocardiograph. This research paves the way for future applications using non-contact sensors to support and potentially replace contact sensors in healthcare.</p>\",\"PeriodicalId\":8896,\"journal\":{\"name\":\"Biomedical Physics & Engineering Express\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Physics & Engineering Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2057-1976/ad8c48\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ad8c48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Radar-based contactless heart beat detection with a modified Pan-Tompkins algorithm.
Background.Using radar for non-contact measuring human vital signs has garnered significant attention due to its undeniable benefits. However, achieving reasonably good accuracy in contactless measurement senarios is still a technical challenge.Materials and methods.The proposed method includes two stages. The first stage involves the process of datasegmentation and signal channel selection. In the next phase, the raw radar signal from the chosen channel is subjected to modified Pan-Tompkins.Results.The experimental findings from twelve individuals demonstrated a strong agreement between the contactless radar and contact electrocardiography (ECG) devices for heart rate measurement, with correlation coefficient of 98.74 percentage; and the 95% limits of agreement obtained by radar and those obtained by ECG were 2.4 beats per minute.Conclusion.The results showed high agreement between heart rate calculated by radar signals and heart rate by electrocardiograph. This research paves the way for future applications using non-contact sensors to support and potentially replace contact sensors in healthcare.
期刊介绍:
BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.