Paulina E Larenas, Pilar Cárdenas, Monserrat Aguirre-Delgadillo, Carlos Moris, Dulce E Casarini, Zoe Vallotton, Minolfa C Prieto, Alexis A Gonzalez
{"title":"GLUT1 和肾素受体介导了高糖条件下肾内髓集合管细胞对 TGF-β 和 CTGF 的不同调控。","authors":"Paulina E Larenas, Pilar Cárdenas, Monserrat Aguirre-Delgadillo, Carlos Moris, Dulce E Casarini, Zoe Vallotton, Minolfa C Prieto, Alexis A Gonzalez","doi":"10.1186/s40659-024-00560-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>During diabetes, prorenin is highly produced by the renal collecting ducts. The binding of prorenin to (pro)renin receptor (PRR) on the apical plasma membrane triggers intracellular profibrotic genes, including TGF-β and CTGF. However, the underlying mechanisms contributing to the stimulation of these pathways remain unclear. Hence, we hypothesize that the glucose transporter-1 (GLUT1) favors the PRR-dependent stimulation of TGF-β and CTGF in the distal nephron segments during high glucose (HG) conditions.</p><p><strong>Methods: </strong>To test this hypothesis, primary cultured renal inner medullary collecting duct (IMCD) cells were treated with normal glucose (NG, 5 mM) or high glucose (HG, 25 mM) for 48 h in the presence or absence of the GLUT1-specific inhibitor BAY 876 (2 nM). Additionally, IMCD cells were treated with the PRR antagonist PRO20. The expression of TGF-β and CTGF was quantified by immunoblot and qRT-PCR.</p><p><strong>Results: </strong>HG increased GLUT1 mRNA and protein abundance, while BAY 876 inhibited these responses. HG treatment upregulated PRR, but the concomitant treatment with BAY 876 partially prevented this effect. TGF-β and CTGF expressions were augmented in IMCD cells treated with HG. However, PRO20 prevented the increases in TGF-β but not those of CTGF. GLUT1 inhibition partially prevented the increases in reactive oxygen species (ROS) during HG while PRO20 did not. ROS scavenging impaired CTGF upregulation during HG conditions. Additionally, long-term exposure to HG increases lipid peroxidation and reduced cell viability.</p><p><strong>Conclusions: </strong>The data indicate that glucose transportation via GLUT1 is implicated in the PRR-dependent upregulation of TGF-β while CTGF is mediated mainly via a mechanism depending on ROS formation in renal medullary collecting duct cells.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"57 1","pages":"81"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542404/pdf/","citationCount":"0","resultStr":"{\"title\":\"GLUT1 and prorenin receptor mediate differential regulation of TGF-β and CTGF in renal inner medullary collecting duct cells during high glucose conditions.\",\"authors\":\"Paulina E Larenas, Pilar Cárdenas, Monserrat Aguirre-Delgadillo, Carlos Moris, Dulce E Casarini, Zoe Vallotton, Minolfa C Prieto, Alexis A Gonzalez\",\"doi\":\"10.1186/s40659-024-00560-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>During diabetes, prorenin is highly produced by the renal collecting ducts. The binding of prorenin to (pro)renin receptor (PRR) on the apical plasma membrane triggers intracellular profibrotic genes, including TGF-β and CTGF. However, the underlying mechanisms contributing to the stimulation of these pathways remain unclear. Hence, we hypothesize that the glucose transporter-1 (GLUT1) favors the PRR-dependent stimulation of TGF-β and CTGF in the distal nephron segments during high glucose (HG) conditions.</p><p><strong>Methods: </strong>To test this hypothesis, primary cultured renal inner medullary collecting duct (IMCD) cells were treated with normal glucose (NG, 5 mM) or high glucose (HG, 25 mM) for 48 h in the presence or absence of the GLUT1-specific inhibitor BAY 876 (2 nM). Additionally, IMCD cells were treated with the PRR antagonist PRO20. The expression of TGF-β and CTGF was quantified by immunoblot and qRT-PCR.</p><p><strong>Results: </strong>HG increased GLUT1 mRNA and protein abundance, while BAY 876 inhibited these responses. HG treatment upregulated PRR, but the concomitant treatment with BAY 876 partially prevented this effect. TGF-β and CTGF expressions were augmented in IMCD cells treated with HG. However, PRO20 prevented the increases in TGF-β but not those of CTGF. GLUT1 inhibition partially prevented the increases in reactive oxygen species (ROS) during HG while PRO20 did not. ROS scavenging impaired CTGF upregulation during HG conditions. Additionally, long-term exposure to HG increases lipid peroxidation and reduced cell viability.</p><p><strong>Conclusions: </strong>The data indicate that glucose transportation via GLUT1 is implicated in the PRR-dependent upregulation of TGF-β while CTGF is mediated mainly via a mechanism depending on ROS formation in renal medullary collecting duct cells.</p>\",\"PeriodicalId\":9084,\"journal\":{\"name\":\"Biological Research\",\"volume\":\"57 1\",\"pages\":\"81\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542404/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s40659-024-00560-8\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40659-024-00560-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
GLUT1 and prorenin receptor mediate differential regulation of TGF-β and CTGF in renal inner medullary collecting duct cells during high glucose conditions.
Background: During diabetes, prorenin is highly produced by the renal collecting ducts. The binding of prorenin to (pro)renin receptor (PRR) on the apical plasma membrane triggers intracellular profibrotic genes, including TGF-β and CTGF. However, the underlying mechanisms contributing to the stimulation of these pathways remain unclear. Hence, we hypothesize that the glucose transporter-1 (GLUT1) favors the PRR-dependent stimulation of TGF-β and CTGF in the distal nephron segments during high glucose (HG) conditions.
Methods: To test this hypothesis, primary cultured renal inner medullary collecting duct (IMCD) cells were treated with normal glucose (NG, 5 mM) or high glucose (HG, 25 mM) for 48 h in the presence or absence of the GLUT1-specific inhibitor BAY 876 (2 nM). Additionally, IMCD cells were treated with the PRR antagonist PRO20. The expression of TGF-β and CTGF was quantified by immunoblot and qRT-PCR.
Results: HG increased GLUT1 mRNA and protein abundance, while BAY 876 inhibited these responses. HG treatment upregulated PRR, but the concomitant treatment with BAY 876 partially prevented this effect. TGF-β and CTGF expressions were augmented in IMCD cells treated with HG. However, PRO20 prevented the increases in TGF-β but not those of CTGF. GLUT1 inhibition partially prevented the increases in reactive oxygen species (ROS) during HG while PRO20 did not. ROS scavenging impaired CTGF upregulation during HG conditions. Additionally, long-term exposure to HG increases lipid peroxidation and reduced cell viability.
Conclusions: The data indicate that glucose transportation via GLUT1 is implicated in the PRR-dependent upregulation of TGF-β while CTGF is mediated mainly via a mechanism depending on ROS formation in renal medullary collecting duct cells.
期刊介绍:
Biological Research is an open access, peer-reviewed journal that encompasses diverse fields of experimental biology, such as biochemistry, bioinformatics, biotechnology, cell biology, cancer, chemical biology, developmental biology, evolutionary biology, genetics, genomics, immunology, marine biology, microbiology, molecular biology, neuroscience, plant biology, physiology, stem cell research, structural biology and systems biology.