源于 COF 的分层多孔 N、O 双掺杂碳纳米片实现长寿命高效水基 Zn 离子超级电容器

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS Journal of energy storage Pub Date : 2024-11-06 DOI:10.1016/j.est.2024.114411
{"title":"源于 COF 的分层多孔 N、O 双掺杂碳纳米片实现长寿命高效水基 Zn 离子超级电容器","authors":"","doi":"10.1016/j.est.2024.114411","DOIUrl":null,"url":null,"abstract":"<div><div>Designing and precisely constructing novel carbon-based cathodes with a high specific surface area (SSA), excellent stability, and abundant active sites is critical for achieving high-performance zinc-ion hybrid capacitors (ZHCs). Covalent organic frameworks (COFs), a class of well-defined crystalline porous polymer materials, can integrate organic building blocks into highly ordered topological structure, offering a robust platform for specific structural design and versatile functional exploitation. In this study, hierarchical porous carbon nanosheets (PCs) with high conductivity and abundant heteroatom doping were synthesized through an in situ polycondensation reaction followed by high-temperature carbonization. This unique structure facilitates the diffusion of electrolyte ions and the adsorption/desorption of Zn<sup>2+</sup> ions. As a result, the optimized PC-1000 electrode demonstrates a high specific capacity of 168.9 mAh g<sup>−1</sup> at 0.1 A g<sup>−1</sup> and remarkable stability, maintaining a high capacity retention rate of 102.5 % after more than 50,000 cycles at 10 A g<sup>−1</sup>, outperforming other PC-based materials reported in the literature. This work provides an effective way for developing carbon-based cathode materials for high-performance energy storage devices.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":null,"pages":null},"PeriodicalIF":8.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COF-derived hierarchical porous N,O dual-doped carbon nanosheets towards efficient aqueous Zn-ion supercapacitor with long lifespan\",\"authors\":\"\",\"doi\":\"10.1016/j.est.2024.114411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Designing and precisely constructing novel carbon-based cathodes with a high specific surface area (SSA), excellent stability, and abundant active sites is critical for achieving high-performance zinc-ion hybrid capacitors (ZHCs). Covalent organic frameworks (COFs), a class of well-defined crystalline porous polymer materials, can integrate organic building blocks into highly ordered topological structure, offering a robust platform for specific structural design and versatile functional exploitation. In this study, hierarchical porous carbon nanosheets (PCs) with high conductivity and abundant heteroatom doping were synthesized through an in situ polycondensation reaction followed by high-temperature carbonization. This unique structure facilitates the diffusion of electrolyte ions and the adsorption/desorption of Zn<sup>2+</sup> ions. As a result, the optimized PC-1000 electrode demonstrates a high specific capacity of 168.9 mAh g<sup>−1</sup> at 0.1 A g<sup>−1</sup> and remarkable stability, maintaining a high capacity retention rate of 102.5 % after more than 50,000 cycles at 10 A g<sup>−1</sup>, outperforming other PC-based materials reported in the literature. This work provides an effective way for developing carbon-based cathode materials for high-performance energy storage devices.</div></div>\",\"PeriodicalId\":15942,\"journal\":{\"name\":\"Journal of energy storage\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of energy storage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352152X24039975\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X24039975","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

设计并精确构建具有高比表面积 (SSA)、优异稳定性和丰富活性位点的新型碳基阴极,对于实现高性能锌离子混合电容器 (ZHC) 至关重要。共价有机框架(COFs)是一类定义明确的结晶多孔聚合物材料,可将有机构件整合到高度有序的拓扑结构中,为特定的结构设计和多功能开发提供了一个强大的平台。本研究通过原位缩聚反应和高温碳化合成了具有高导电性和丰富杂原子掺杂的分层多孔碳纳米片(PCs)。这种独特的结构有利于电解质离子的扩散和 Zn2+ 离子的吸附/解吸。因此,优化后的 PC-1000 电极在 0.1 A g-1 条件下显示出 168.9 mAh g-1 的高比容量和显著的稳定性,在 10 A g-1 条件下循环超过 50,000 次后仍能保持 102.5 % 的高容量保持率,优于文献报道的其他 PC 基材料。这项工作为开发用于高性能储能设备的碳基阴极材料提供了一条有效途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
COF-derived hierarchical porous N,O dual-doped carbon nanosheets towards efficient aqueous Zn-ion supercapacitor with long lifespan
Designing and precisely constructing novel carbon-based cathodes with a high specific surface area (SSA), excellent stability, and abundant active sites is critical for achieving high-performance zinc-ion hybrid capacitors (ZHCs). Covalent organic frameworks (COFs), a class of well-defined crystalline porous polymer materials, can integrate organic building blocks into highly ordered topological structure, offering a robust platform for specific structural design and versatile functional exploitation. In this study, hierarchical porous carbon nanosheets (PCs) with high conductivity and abundant heteroatom doping were synthesized through an in situ polycondensation reaction followed by high-temperature carbonization. This unique structure facilitates the diffusion of electrolyte ions and the adsorption/desorption of Zn2+ ions. As a result, the optimized PC-1000 electrode demonstrates a high specific capacity of 168.9 mAh g−1 at 0.1 A g−1 and remarkable stability, maintaining a high capacity retention rate of 102.5 % after more than 50,000 cycles at 10 A g−1, outperforming other PC-based materials reported in the literature. This work provides an effective way for developing carbon-based cathode materials for high-performance energy storage devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
期刊最新文献
Green synthesis of SiOx/C-TiO2 with continuous conductive network towards enhancing lithium storage performance Neutral-state black electrochromic polymer with enhanced supercapacitor electrode performance An improved barrier function double integral sliding mode control of SynRM for hybrid energy storage system-based electric vehicle Analysis and prediction of battery temperature in thermal management system coupled SiC foam-composite phase change material and air Role of pumped hydro storage plants for flood control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1