设计 Ti3C2Tx/NiCo-MOF 纳米复合电极:电化学储能设备的多功能平台

IF 2.8 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Materials Science: Materials in Electronics Pub Date : 2024-11-07 DOI:10.1007/s10854-024-13787-8
Muhammad Azhar Mumtaz, Amir Muhammad Afzal, Muhammad Hamza Waris, Muhammad Waqas Iqbal, Muhammad Imran, Sohail Mumtaz, Aboud Ahmed Awadh Bahajjaj
{"title":"设计 Ti3C2Tx/NiCo-MOF 纳米复合电极:电化学储能设备的多功能平台","authors":"Muhammad Azhar Mumtaz,&nbsp;Amir Muhammad Afzal,&nbsp;Muhammad Hamza Waris,&nbsp;Muhammad Waqas Iqbal,&nbsp;Muhammad Imran,&nbsp;Sohail Mumtaz,&nbsp;Aboud Ahmed Awadh Bahajjaj","doi":"10.1007/s10854-024-13787-8","DOIUrl":null,"url":null,"abstract":"<div><p>A simple synthesis method has been developed to improve the structural stability and storage capacity of MXenes (Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>)-based electrode materials for hybrid energy storage devices. This method involves the creation of Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>/bimetal-organic framework (NiCo-MOF) nanoarchitecture as anodes, which exhibit outstanding performance in hybrid devices. The 2D Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> nanorods are combined with NiCo-MOF nanoflakes through hydrogen bonding to create 3D Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>/NiCo-MOF composite. The electrochemical characteristics of Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>@NiCo-MOFs nanocomposite were measured. Due to enhancements in charge transfer and redox properties, the composite electrode consisting of Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>/NiCo-MOFs demonstrated a specific capacity of 1635.1 Cg<sup>−1</sup>, significantly surpassing that of pure NiCo-MOFs (844.5 Cg<sup>−1</sup>). Additionally, the hybrid supercapacitor device (Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>/NiCo-MOFs//AC) showed a specific capacity (Qs) of 222.53 Cg<sup>−1</sup> with an energy density (E<sub>d</sub>) of 56 Wh/kg and a power density (P<sub>d</sub>) of 2800 W/kg by using KOH as an electrolyte. The device achieved an impressive capacity recovery rate of 86.7% after being tested with up to 5000 charging and discharging cycles. This study opens new ways to make safe and reliable supercapacitors using environmentally friendly materials. The findings underscore the significant potential of Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>/NiCo-MOF in advancing the field of high-performance hybrid energy storage devices.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":"35 31","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing of Ti3C2Tx/NiCo-MOF nanocomposite electrode: a versatile platform for electrochemical-based energy storage devices\",\"authors\":\"Muhammad Azhar Mumtaz,&nbsp;Amir Muhammad Afzal,&nbsp;Muhammad Hamza Waris,&nbsp;Muhammad Waqas Iqbal,&nbsp;Muhammad Imran,&nbsp;Sohail Mumtaz,&nbsp;Aboud Ahmed Awadh Bahajjaj\",\"doi\":\"10.1007/s10854-024-13787-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A simple synthesis method has been developed to improve the structural stability and storage capacity of MXenes (Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>)-based electrode materials for hybrid energy storage devices. This method involves the creation of Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>/bimetal-organic framework (NiCo-MOF) nanoarchitecture as anodes, which exhibit outstanding performance in hybrid devices. The 2D Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> nanorods are combined with NiCo-MOF nanoflakes through hydrogen bonding to create 3D Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>/NiCo-MOF composite. The electrochemical characteristics of Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>@NiCo-MOFs nanocomposite were measured. Due to enhancements in charge transfer and redox properties, the composite electrode consisting of Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>/NiCo-MOFs demonstrated a specific capacity of 1635.1 Cg<sup>−1</sup>, significantly surpassing that of pure NiCo-MOFs (844.5 Cg<sup>−1</sup>). Additionally, the hybrid supercapacitor device (Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>/NiCo-MOFs//AC) showed a specific capacity (Qs) of 222.53 Cg<sup>−1</sup> with an energy density (E<sub>d</sub>) of 56 Wh/kg and a power density (P<sub>d</sub>) of 2800 W/kg by using KOH as an electrolyte. The device achieved an impressive capacity recovery rate of 86.7% after being tested with up to 5000 charging and discharging cycles. This study opens new ways to make safe and reliable supercapacitors using environmentally friendly materials. The findings underscore the significant potential of Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>/NiCo-MOF in advancing the field of high-performance hybrid energy storage devices.</p></div>\",\"PeriodicalId\":646,\"journal\":{\"name\":\"Journal of Materials Science: Materials in Electronics\",\"volume\":\"35 31\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science: Materials in Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10854-024-13787-8\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-024-13787-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一种简单的合成方法,用于提高混合储能装置中基于 MXenes(Ti3C2Tx)电极材料的结构稳定性和储能能力。该方法包括创建作为阳极的 Ti3C2Tx/双金属有机框架(NiCo-MOF)纳米结构,这种结构在混合设备中表现出卓越的性能。二维 Ti3C2Tx 纳米棒与 NiCo-MOF 纳米片通过氢键结合,形成三维 Ti3C2Tx/NiCo-MOF 复合材料。测量了 Ti3C2Tx@NiCo-MOFs 纳米复合材料的电化学特性。由于电荷转移和氧化还原特性的增强,Ti3C2Tx/NiCo-MOFs 复合电极的比容量达到了 1635.1 Cg-1,大大超过了纯 NiCo-MOFs 的比容量(844.5 Cg-1)。此外,混合超级电容器装置(Ti3C2Tx/NiCo-MOFs//AC)使用 KOH 作为电解质,比容量(Qs)为 222.53 Cg-1,能量密度(Ed)为 56 Wh/kg,功率密度(Pd)为 2800 W/kg。经过多达 5000 次充放电循环测试后,该装置的容量恢复率达到了惊人的 86.7%。这项研究为使用环保材料制造安全可靠的超级电容器开辟了新途径。研究结果凸显了 Ti3C2Tx/NiCo-MOF 在推动高性能混合储能器件领域发展方面的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Designing of Ti3C2Tx/NiCo-MOF nanocomposite electrode: a versatile platform for electrochemical-based energy storage devices

A simple synthesis method has been developed to improve the structural stability and storage capacity of MXenes (Ti3C2Tx)-based electrode materials for hybrid energy storage devices. This method involves the creation of Ti3C2Tx/bimetal-organic framework (NiCo-MOF) nanoarchitecture as anodes, which exhibit outstanding performance in hybrid devices. The 2D Ti3C2Tx nanorods are combined with NiCo-MOF nanoflakes through hydrogen bonding to create 3D Ti3C2Tx/NiCo-MOF composite. The electrochemical characteristics of Ti3C2Tx@NiCo-MOFs nanocomposite were measured. Due to enhancements in charge transfer and redox properties, the composite electrode consisting of Ti3C2Tx/NiCo-MOFs demonstrated a specific capacity of 1635.1 Cg−1, significantly surpassing that of pure NiCo-MOFs (844.5 Cg−1). Additionally, the hybrid supercapacitor device (Ti3C2Tx/NiCo-MOFs//AC) showed a specific capacity (Qs) of 222.53 Cg−1 with an energy density (Ed) of 56 Wh/kg and a power density (Pd) of 2800 W/kg by using KOH as an electrolyte. The device achieved an impressive capacity recovery rate of 86.7% after being tested with up to 5000 charging and discharging cycles. This study opens new ways to make safe and reliable supercapacitors using environmentally friendly materials. The findings underscore the significant potential of Ti3C2Tx/NiCo-MOF in advancing the field of high-performance hybrid energy storage devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science: Materials in Electronics
Journal of Materials Science: Materials in Electronics 工程技术-材料科学:综合
CiteScore
5.00
自引率
7.10%
发文量
1931
审稿时长
2 months
期刊介绍: The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.
期刊最新文献
Ultrasound‐assisted reverse micelle synthesis of Eu-MOF as a turn-off luminescent sensor for the ultrasensitive and selective detection of caffeine Temperature driven shifts of super-conductance in Zn-doped CuTl-1223 nanoparticle Tailoring of dielectric behavior and a.c. conduction in binary Se80Te20 glass by incorporation of transition metals (Fe, Co, Ni, Cu) Synthesis of Mg-doped PbMoO4 spinel for photocatalytic degradation of dye solutions (BB and BG dyes) Density functional theory and experimental study on the optical properties of calcium tungsten bronze
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1