Lingzhi Zhang, Hanlong Liu, Xuanming Ding, Qiang Ou, Chunyan Wang
{"title":"粘土施工过程中灌注碎石桩性能的可视化实验研究","authors":"Lingzhi Zhang, Hanlong Liu, Xuanming Ding, Qiang Ou, Chunyan Wang","doi":"10.1007/s11440-024-02423-8","DOIUrl":null,"url":null,"abstract":"<div><p>The grouted gravel pile is a new method of pile foundation, which has been widely used in engineering fields in recent years. However, the grout diffusion characteristics and full-field displacement response of soil during grouting have not been fully revealed and systematically studied in previous publications. This paper employed a transparent soil model test system to explore the effects of the grouting pressure (GP), soil pre-consolidation pressure (SPCP), and initial viscosity of grout (GIV) on the grouting performances and load-bearing characteristics of grouted gravel piles. The development laws of the grouting duration, displacement field of the soil, and ultimate load-bearing capacity of the pile were analyzed. The results show that the total grouting duration decreases with a higher GP, increases with the increasing GIV, initially increases and then decreases as SPCP increases. Both the range of horizontal and vertical displacements of the soil around the pile and the distribution of vertical displacements of the soil at the pile end were obviously enlarged with GP as well as with GIV. However, with the increasing SPCP, they showed a decreasing tendency. The vertical ultimate load-bearing capacity of the grouted gravel pile increases with GP, SPCP, and GIV to varying degrees. The findings of this study contribute to the understanding of the pile-soil interaction during grouting process of the grouted gravel pile, which may improve the design of construction parameters.</p></div>","PeriodicalId":49308,"journal":{"name":"Acta Geotechnica","volume":"19 11","pages":"7369 - 7387"},"PeriodicalIF":5.6000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visual experimental investigation on the performance of grouted gravel pile during construction process in clay\",\"authors\":\"Lingzhi Zhang, Hanlong Liu, Xuanming Ding, Qiang Ou, Chunyan Wang\",\"doi\":\"10.1007/s11440-024-02423-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The grouted gravel pile is a new method of pile foundation, which has been widely used in engineering fields in recent years. However, the grout diffusion characteristics and full-field displacement response of soil during grouting have not been fully revealed and systematically studied in previous publications. This paper employed a transparent soil model test system to explore the effects of the grouting pressure (GP), soil pre-consolidation pressure (SPCP), and initial viscosity of grout (GIV) on the grouting performances and load-bearing characteristics of grouted gravel piles. The development laws of the grouting duration, displacement field of the soil, and ultimate load-bearing capacity of the pile were analyzed. The results show that the total grouting duration decreases with a higher GP, increases with the increasing GIV, initially increases and then decreases as SPCP increases. Both the range of horizontal and vertical displacements of the soil around the pile and the distribution of vertical displacements of the soil at the pile end were obviously enlarged with GP as well as with GIV. However, with the increasing SPCP, they showed a decreasing tendency. The vertical ultimate load-bearing capacity of the grouted gravel pile increases with GP, SPCP, and GIV to varying degrees. The findings of this study contribute to the understanding of the pile-soil interaction during grouting process of the grouted gravel pile, which may improve the design of construction parameters.</p></div>\",\"PeriodicalId\":49308,\"journal\":{\"name\":\"Acta Geotechnica\",\"volume\":\"19 11\",\"pages\":\"7369 - 7387\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Geotechnica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11440-024-02423-8\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geotechnica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11440-024-02423-8","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
摘要
灌注碎石桩是一种新的桩基方法,近年来在工程领域得到了广泛应用。然而,灌浆过程中土体的灌浆扩散特性和全场位移响应在以往的文献中并未得到充分揭示和系统研究。本文采用透明土模型试验系统,探讨了灌浆压力(GP)、土壤预固结压力(SPCP)和灌浆料初始粘度(GIV)对灌注碎石桩的灌浆性能和承载特性的影响。分析了灌浆持续时间、土体位移场和桩的极限承载力的发展规律。结果表明,灌浆总持续时间随 GP 的增大而减小,随 GIV 的增大而增大,随着 SPCP 的增大,灌浆总持续时间先增大后减小。桩周围土体的水平位移和垂直位移范围以及桩端土体的垂直位移分布都随着 GP 和 GIV 的增大而明显增大。然而,随着 SPCP 的增大,它们呈减小趋势。灌注碎石桩的垂直极限承载力随着 GP、SPCP 和 GIV 的增加而有不同程度的提高。该研究结果有助于理解灌注碎石桩灌浆过程中桩土之间的相互作用,从而改进施工参数的设计。
Visual experimental investigation on the performance of grouted gravel pile during construction process in clay
The grouted gravel pile is a new method of pile foundation, which has been widely used in engineering fields in recent years. However, the grout diffusion characteristics and full-field displacement response of soil during grouting have not been fully revealed and systematically studied in previous publications. This paper employed a transparent soil model test system to explore the effects of the grouting pressure (GP), soil pre-consolidation pressure (SPCP), and initial viscosity of grout (GIV) on the grouting performances and load-bearing characteristics of grouted gravel piles. The development laws of the grouting duration, displacement field of the soil, and ultimate load-bearing capacity of the pile were analyzed. The results show that the total grouting duration decreases with a higher GP, increases with the increasing GIV, initially increases and then decreases as SPCP increases. Both the range of horizontal and vertical displacements of the soil around the pile and the distribution of vertical displacements of the soil at the pile end were obviously enlarged with GP as well as with GIV. However, with the increasing SPCP, they showed a decreasing tendency. The vertical ultimate load-bearing capacity of the grouted gravel pile increases with GP, SPCP, and GIV to varying degrees. The findings of this study contribute to the understanding of the pile-soil interaction during grouting process of the grouted gravel pile, which may improve the design of construction parameters.
期刊介绍:
Acta Geotechnica is an international journal devoted to the publication and dissemination of basic and applied research in geoengineering – an interdisciplinary field dealing with geomaterials such as soils and rocks. Coverage emphasizes the interplay between geomechanical models and their engineering applications. The journal presents original research papers on fundamental concepts in geomechanics and their novel applications in geoengineering based on experimental, analytical and/or numerical approaches. The main purpose of the journal is to foster understanding of the fundamental mechanisms behind the phenomena and processes in geomaterials, from kilometer-scale problems as they occur in geoscience, and down to the nano-scale, with their potential impact on geoengineering. The journal strives to report and archive progress in the field in a timely manner, presenting research papers, review articles, short notes and letters to the editors.