Haoyu Chen, Dongqing Wu, Julian Holzinger, Rainer Götz, Dorian Didier, Anne K Schütz, Sabine Schneider, Pavel Kielkowski
{"title":"芳基频哪醇硼酸酯产生的芳基自由基可修饰肽和蛋白质","authors":"Haoyu Chen, Dongqing Wu, Julian Holzinger, Rainer Götz, Dorian Didier, Anne K Schütz, Sabine Schneider, Pavel Kielkowski","doi":"10.1002/ejoc.202401246","DOIUrl":null,"url":null,"abstract":"We report here a distinct reaction, which generates aryl radicals from aryl pinacol boronates under mild aqueous conditions and can be used for peptide and protein modifications. The strategy leverages the versatile reactivity of aryl pinacol boronates to form aryl radicals in presence of ammonium persulfate (APS). The formed aryl radicals insert readily into peptide disulfide bonds while tolerating other functionalities. On the protein level, the reactivity extends beyond the disulfide bonds. The methodology benefits from the accessibility of starting aryl pinacol boronates, as well as biocompatible conditions. In contrast to conventional methods used for aryl radical generation, the strategy is metal‐free, does not require photoinduction and can be readily performed under aqueous conditions. The mechanism of the reactions was investigated by radical‐trapping experiments, spectroscopic analysis and oxygen scavenging. The presented approach broadens the application of aryl pinacol boronate esters in radical reactions.","PeriodicalId":167,"journal":{"name":"European Journal of Organic Chemistry","volume":"3 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aryl Radicals Generated from Aryl Pinacol Boronates Modify Peptides and Proteins\",\"authors\":\"Haoyu Chen, Dongqing Wu, Julian Holzinger, Rainer Götz, Dorian Didier, Anne K Schütz, Sabine Schneider, Pavel Kielkowski\",\"doi\":\"10.1002/ejoc.202401246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report here a distinct reaction, which generates aryl radicals from aryl pinacol boronates under mild aqueous conditions and can be used for peptide and protein modifications. The strategy leverages the versatile reactivity of aryl pinacol boronates to form aryl radicals in presence of ammonium persulfate (APS). The formed aryl radicals insert readily into peptide disulfide bonds while tolerating other functionalities. On the protein level, the reactivity extends beyond the disulfide bonds. The methodology benefits from the accessibility of starting aryl pinacol boronates, as well as biocompatible conditions. In contrast to conventional methods used for aryl radical generation, the strategy is metal‐free, does not require photoinduction and can be readily performed under aqueous conditions. The mechanism of the reactions was investigated by radical‐trapping experiments, spectroscopic analysis and oxygen scavenging. The presented approach broadens the application of aryl pinacol boronate esters in radical reactions.\",\"PeriodicalId\":167,\"journal\":{\"name\":\"European Journal of Organic Chemistry\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Organic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/ejoc.202401246\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/ejoc.202401246","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Aryl Radicals Generated from Aryl Pinacol Boronates Modify Peptides and Proteins
We report here a distinct reaction, which generates aryl radicals from aryl pinacol boronates under mild aqueous conditions and can be used for peptide and protein modifications. The strategy leverages the versatile reactivity of aryl pinacol boronates to form aryl radicals in presence of ammonium persulfate (APS). The formed aryl radicals insert readily into peptide disulfide bonds while tolerating other functionalities. On the protein level, the reactivity extends beyond the disulfide bonds. The methodology benefits from the accessibility of starting aryl pinacol boronates, as well as biocompatible conditions. In contrast to conventional methods used for aryl radical generation, the strategy is metal‐free, does not require photoinduction and can be readily performed under aqueous conditions. The mechanism of the reactions was investigated by radical‐trapping experiments, spectroscopic analysis and oxygen scavenging. The presented approach broadens the application of aryl pinacol boronate esters in radical reactions.
期刊介绍:
The European Journal of Organic Chemistry (2019 ISI Impact Factor 2.889) publishes Full Papers, Communications, and Minireviews from the entire spectrum of synthetic organic, bioorganic and physical-organic chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
The following journals have been merged to form two leading journals, the European Journal of Organic Chemistry and the European Journal of Inorganic Chemistry:
Liebigs Annalen
Bulletin des Sociétés Chimiques Belges
Bulletin de la Société Chimique de France
Gazzetta Chimica Italiana
Recueil des Travaux Chimiques des Pays-Bas
Anales de Química
Chimika Chronika
Revista Portuguesa de Química
ACH—Models in Chemistry
Polish Journal of Chemistry.