调节局部氧配位,在锂离子电池的 O2 型层状阴极中实现高度可逆的阴离子氧化还原和可忽略的电压衰减

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Advanced Energy Materials Pub Date : 2024-11-09 DOI:10.1002/aenm.202404276
Xiaoxia Yang, Kai Wang, Jilu Zhang, Hang Li, Hao Liu, Tian Zhao, Xinyue Zhai, Qin Wang, Chengjun Fan, Martin Etter, Sylvio Indris, Weibo Hua, Xiaoping Ouyang
{"title":"调节局部氧配位,在锂离子电池的 O2 型层状阴极中实现高度可逆的阴离子氧化还原和可忽略的电压衰减","authors":"Xiaoxia Yang, Kai Wang, Jilu Zhang, Hang Li, Hao Liu, Tian Zhao, Xinyue Zhai, Qin Wang, Chengjun Fan, Martin Etter, Sylvio Indris, Weibo Hua, Xiaoping Ouyang","doi":"10.1002/aenm.202404276","DOIUrl":null,"url":null,"abstract":"O2‐type layered oxides have emerged as promising cathode materials for high‐energy lithium‐ion batteries, offering a solution to mitigate voltage decay through reversible transition metal (TM) migration between TM and Li layers during cycling. However, achieving a fully reversible oxygen redox remains a significant challenge. Here, this is addressed by introducing Li─O─Li configurations in the layered structure of Li<jats:sub>0.85□0.15</jats:sub>[Li<jats:sub>0.08□0.04</jats:sub>Ni<jats:sub>0.22</jats:sub>Mn<jats:sub>0.66</jats:sub>]O<jats:sub>2</jats:sub> (O2‐LLNMO), where <jats:sub>□</jats:sub> represents vacancies. This adjustment alters the redox‐active oxygen environment and increases the energy gap between the O 2p nonbonding and TM─O antibonding bands. As a result, the contribution of lattice oxygen to capacity is significantly enhanced, improving the reversibility of oxygen redox processes. The O2‐LLNMO cathode demonstrates minimal voltage decay (0.13 mV per cycle) and excellent cycling stability, retaining 95.8% of its capacity after 100 cycles. A novel strategy is presented to design high‐performance layered oxides with stable anionic redox activity, advancing the development of next‐generation lithium‐ion batteries.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"35 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulating Local Oxygen Coordination to Achieve Highly Reversible Anionic Redox and Negligible Voltage Decay in O2‐Type Layered Cathodes for Li‐Ion Batteries\",\"authors\":\"Xiaoxia Yang, Kai Wang, Jilu Zhang, Hang Li, Hao Liu, Tian Zhao, Xinyue Zhai, Qin Wang, Chengjun Fan, Martin Etter, Sylvio Indris, Weibo Hua, Xiaoping Ouyang\",\"doi\":\"10.1002/aenm.202404276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"O2‐type layered oxides have emerged as promising cathode materials for high‐energy lithium‐ion batteries, offering a solution to mitigate voltage decay through reversible transition metal (TM) migration between TM and Li layers during cycling. However, achieving a fully reversible oxygen redox remains a significant challenge. Here, this is addressed by introducing Li─O─Li configurations in the layered structure of Li<jats:sub>0.85□0.15</jats:sub>[Li<jats:sub>0.08□0.04</jats:sub>Ni<jats:sub>0.22</jats:sub>Mn<jats:sub>0.66</jats:sub>]O<jats:sub>2</jats:sub> (O2‐LLNMO), where <jats:sub>□</jats:sub> represents vacancies. This adjustment alters the redox‐active oxygen environment and increases the energy gap between the O 2p nonbonding and TM─O antibonding bands. As a result, the contribution of lattice oxygen to capacity is significantly enhanced, improving the reversibility of oxygen redox processes. The O2‐LLNMO cathode demonstrates minimal voltage decay (0.13 mV per cycle) and excellent cycling stability, retaining 95.8% of its capacity after 100 cycles. A novel strategy is presented to design high‐performance layered oxides with stable anionic redox activity, advancing the development of next‐generation lithium‐ion batteries.\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":24.4000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aenm.202404276\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202404276","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

O2- 型层状氧化物已成为高能锂离子电池的一种前景看好的正极材料,它提供了一种在循环过程中通过过渡金属 (TM) 在 TM 层和锂层之间的可逆迁移来减缓电压衰减的解决方案。然而,实现完全可逆的氧氧化还原仍然是一项重大挑战。本文通过在 Li0.85□0.15[Li0.08□0.04Ni0.22Mn0.66]O2(O2-LLNMO)的层状结构中引入 Li─O─Li 配置来解决这一问题,其中 □ 代表空位。这种调整改变了氧化还原活性氧环境,增加了 O 2p 非键带和 TM─O 反键带之间的能隙。因此,晶格氧对容量的贡献显著提高,改善了氧氧化还原过程的可逆性。O2-LLNMO 阴极的电压衰减极小(每循环 0.13 mV),循环稳定性极佳,100 个循环后仍能保持 95.8% 的容量。本文提出了一种设计具有稳定阴离子氧化还原活性的高性能层状氧化物的新策略,从而推动了下一代锂离子电池的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modulating Local Oxygen Coordination to Achieve Highly Reversible Anionic Redox and Negligible Voltage Decay in O2‐Type Layered Cathodes for Li‐Ion Batteries
O2‐type layered oxides have emerged as promising cathode materials for high‐energy lithium‐ion batteries, offering a solution to mitigate voltage decay through reversible transition metal (TM) migration between TM and Li layers during cycling. However, achieving a fully reversible oxygen redox remains a significant challenge. Here, this is addressed by introducing Li─O─Li configurations in the layered structure of Li0.85□0.15[Li0.08□0.04Ni0.22Mn0.66]O2 (O2‐LLNMO), where represents vacancies. This adjustment alters the redox‐active oxygen environment and increases the energy gap between the O 2p nonbonding and TM─O antibonding bands. As a result, the contribution of lattice oxygen to capacity is significantly enhanced, improving the reversibility of oxygen redox processes. The O2‐LLNMO cathode demonstrates minimal voltage decay (0.13 mV per cycle) and excellent cycling stability, retaining 95.8% of its capacity after 100 cycles. A novel strategy is presented to design high‐performance layered oxides with stable anionic redox activity, advancing the development of next‐generation lithium‐ion batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
期刊最新文献
Multihybridization for Enhancing Fe-Ni Bimetal Electrocatalyst in Water Oxidation Semi-Interpenetrating Network Electrolytes Utilizing Ester-Functionalized Low Tg Polysiloxanes in Lithium-Metal Batteries Comprehensive Passivation on Different Charged Ions and Defects for High Efficiency and Stable Perovskite Solar Cells The Electrochemical Acetone/Isopropanol Hydrogenation Cycle – An Alternative to Current Hydrogen Storage Solutions Robust Sodium Storage Enabled by Heterogeneous Engineering and Electrolyte Modification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1