CeO2 加速的 CoSe2 纳米针表面重构形成活性 CeO2@CoOOH 界面,促进水分离中的氧进化反应

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Advanced Energy Materials Pub Date : 2024-11-11 DOI:10.1002/aenm.202403744
Quanxin Guo, Yu Li, Zhengrong Xu, Rui Liu
{"title":"CeO2 加速的 CoSe2 纳米针表面重构形成活性 CeO2@CoOOH 界面,促进水分离中的氧进化反应","authors":"Quanxin Guo, Yu Li, Zhengrong Xu, Rui Liu","doi":"10.1002/aenm.202403744","DOIUrl":null,"url":null,"abstract":"Interface engineering is an efficient strategy to create high‐performance electrocatalysts for water splitting. In the present work, CeO<jats:sub>2</jats:sub>@CoSe<jats:sub>2</jats:sub> nanoneedle on carbon cloth (CeO<jats:sub>2</jats:sub>@CoSe<jats:sub>2</jats:sub>/CC) demonstrates high efficiency for oxygen evolution reaction (OER) and water splitting. CeO<jats:sub>2</jats:sub> with abundant O vacancies facilitates the adsorption of OH<jats:sup>−</jats:sup> and boosts the reconstruction of CoSe<jats:sub>2</jats:sub> into CoOOH at lower potentials. The in situ generated active CeO<jats:sub>2</jats:sub>@CoOOH heterointerface upshifts the d‐band center of Co site, thereby decreasing the free energy of rate‐determining step (RDS) (<jats:sup>*</jats:sup>O to <jats:sup>*</jats:sup>OOH) during the OER process. It delivers a low OER overpotential of 245 mV at 10 mA cm<jats:sup>−2</jats:sup>. CeO<jats:sub>2</jats:sub>@CoSe<jats:sub>2</jats:sub>/CC is also found to be active for hydrogen evolution reaction (HER, 138 mV overpotential at 10 mA cm<jats:sup>−2</jats:sup>), profiting from CeO<jats:sub>2</jats:sub>‐facilitated <jats:sup>*</jats:sup>H<jats:sub>2</jats:sub>O dissociation and <jats:sup>*</jats:sup>H adsorption on CoSe<jats:sub>2</jats:sub>. The overall water splitting is achieved over the CeO<jats:sub>2</jats:sub>@CoSe<jats:sub>2</jats:sub>/CC bifunctional electrode with a low electrolysis voltage of 1.54 V at 10 mA cm<jats:sup>−2</jats:sup>. This work offers valuable insights into CeO<jats:sub>2</jats:sub>‐assisted surface reconstruction as well as provides water electrolysis catalysts through interface engineering.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"19 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CeO2‐Accelerated Surface Reconstruction of CoSe2 Nanoneedle Forms Active CeO2@CoOOH Interface to Boost Oxygen Evolution Reaction for Water Splitting\",\"authors\":\"Quanxin Guo, Yu Li, Zhengrong Xu, Rui Liu\",\"doi\":\"10.1002/aenm.202403744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interface engineering is an efficient strategy to create high‐performance electrocatalysts for water splitting. In the present work, CeO<jats:sub>2</jats:sub>@CoSe<jats:sub>2</jats:sub> nanoneedle on carbon cloth (CeO<jats:sub>2</jats:sub>@CoSe<jats:sub>2</jats:sub>/CC) demonstrates high efficiency for oxygen evolution reaction (OER) and water splitting. CeO<jats:sub>2</jats:sub> with abundant O vacancies facilitates the adsorption of OH<jats:sup>−</jats:sup> and boosts the reconstruction of CoSe<jats:sub>2</jats:sub> into CoOOH at lower potentials. The in situ generated active CeO<jats:sub>2</jats:sub>@CoOOH heterointerface upshifts the d‐band center of Co site, thereby decreasing the free energy of rate‐determining step (RDS) (<jats:sup>*</jats:sup>O to <jats:sup>*</jats:sup>OOH) during the OER process. It delivers a low OER overpotential of 245 mV at 10 mA cm<jats:sup>−2</jats:sup>. CeO<jats:sub>2</jats:sub>@CoSe<jats:sub>2</jats:sub>/CC is also found to be active for hydrogen evolution reaction (HER, 138 mV overpotential at 10 mA cm<jats:sup>−2</jats:sup>), profiting from CeO<jats:sub>2</jats:sub>‐facilitated <jats:sup>*</jats:sup>H<jats:sub>2</jats:sub>O dissociation and <jats:sup>*</jats:sup>H adsorption on CoSe<jats:sub>2</jats:sub>. The overall water splitting is achieved over the CeO<jats:sub>2</jats:sub>@CoSe<jats:sub>2</jats:sub>/CC bifunctional electrode with a low electrolysis voltage of 1.54 V at 10 mA cm<jats:sup>−2</jats:sup>. This work offers valuable insights into CeO<jats:sub>2</jats:sub>‐assisted surface reconstruction as well as provides water electrolysis catalysts through interface engineering.\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":24.4000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aenm.202403744\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202403744","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

界面工程是制造高性能水分离电催化剂的有效策略。在本研究中,碳布上的 CeO2@CoSe2 纳米针(CeO2@CoSe2/CC)在氧进化反应(OER)和水分离方面表现出很高的效率。具有大量 O 空位的 CeO2 可促进 OH- 的吸附,并在较低电位下促进 CoSe2 重构为 CoOOH。原位生成的活性 CeO2@CoOOH 异质界面上移了 Co 位点的 d 带中心,从而降低了 OER 过程中速率决定步骤(RDS)(*O 到 *OOH)的自由能。在 10 mA cm-2 的条件下,它能提供 245 mV 的低 OER 过电位。研究还发现,CeO2@CoSe2/CC 在氢进化反应(HER,10 mA cm-2 时 138 mV 的过电位)中也很活跃,这得益于 CeO2 促进的 *H2O 解离和 *H 在 CoSe2 上的吸附。在 CeO2@CoSe2/CC 双功能电极上实现了整体水分离,10 mA cm-2 时电解电压低至 1.54 V。这项工作为 CeO2 辅助表面重构提供了宝贵的见解,并通过界面工程提供了水电解催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CeO2‐Accelerated Surface Reconstruction of CoSe2 Nanoneedle Forms Active CeO2@CoOOH Interface to Boost Oxygen Evolution Reaction for Water Splitting
Interface engineering is an efficient strategy to create high‐performance electrocatalysts for water splitting. In the present work, CeO2@CoSe2 nanoneedle on carbon cloth (CeO2@CoSe2/CC) demonstrates high efficiency for oxygen evolution reaction (OER) and water splitting. CeO2 with abundant O vacancies facilitates the adsorption of OH and boosts the reconstruction of CoSe2 into CoOOH at lower potentials. The in situ generated active CeO2@CoOOH heterointerface upshifts the d‐band center of Co site, thereby decreasing the free energy of rate‐determining step (RDS) (*O to *OOH) during the OER process. It delivers a low OER overpotential of 245 mV at 10 mA cm−2. CeO2@CoSe2/CC is also found to be active for hydrogen evolution reaction (HER, 138 mV overpotential at 10 mA cm−2), profiting from CeO2‐facilitated *H2O dissociation and *H adsorption on CoSe2. The overall water splitting is achieved over the CeO2@CoSe2/CC bifunctional electrode with a low electrolysis voltage of 1.54 V at 10 mA cm−2. This work offers valuable insights into CeO2‐assisted surface reconstruction as well as provides water electrolysis catalysts through interface engineering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
期刊最新文献
Multihybridization for Enhancing Fe-Ni Bimetal Electrocatalyst in Water Oxidation Semi-Interpenetrating Network Electrolytes Utilizing Ester-Functionalized Low Tg Polysiloxanes in Lithium-Metal Batteries Comprehensive Passivation on Different Charged Ions and Defects for High Efficiency and Stable Perovskite Solar Cells The Electrochemical Acetone/Isopropanol Hydrogenation Cycle – An Alternative to Current Hydrogen Storage Solutions Robust Sodium Storage Enabled by Heterogeneous Engineering and Electrolyte Modification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1