Ruonan Ma, Lijuan Peng, Ruolan Tang, Tao Jiang, Jiali Chang, Guoxue Li, Jiani Wang, Yan Yang, Jing Yuan
{"title":"堆肥过程中的生物气溶胶排放特征和潜在风险:关注病原体和抗菌剂耐药性","authors":"Ruonan Ma, Lijuan Peng, Ruolan Tang, Tao Jiang, Jiali Chang, Guoxue Li, Jiani Wang, Yan Yang, Jing Yuan","doi":"10.1016/j.jhazmat.2024.136466","DOIUrl":null,"url":null,"abstract":"In this study, we analyzed bioaerosol emission characteristics and potential risks of antimicrobial resistance (AMR) during composting using the impaction culture method and metagenomic sequencing. The results showed that the highly saturated water vapor in the emission gas mitigated particulate matter emission during the thermophilic period. About the bioaerosols, the airborne aerobic bacterial emissions were suppressed as composting enters the mature period, and the airborne fungi are usually present as single-cell or small-cell aggregates (< 3.3 μm). In addition, the microbial community structure in bioaerosols was stable and independent of composting time. Most importantly, the PM<sub>2.5</sub> in bioaerosols contained large amounts of antibiotic resistance genes (ARGs), potential pathogens, and multidrug resistant pathogens, which were diverse and present in high concentrations. Among them, ARGs concentrations encoding 21 antibiotics ranged from –4.50 to 0.70 ppm/m<sup>3</sup> (Log<sub>10</sub> ARGs). Among the 89 potential human pathogens detected, <em>Escherichia coli, Salmonella enterica, Klebsiella pneumoniae</em>, and <em>Staphylococcus aureus</em> were the only culturable potentially multidrug resistant pathogens carrying multiple ARGs encoding resistance at high concentrations (–0.57 to 1.15 ppm/m<sup>3</sup> (Log<sub>10</sub> ARGs)), and were more likely to persist and multiply in oligotrophic environments. Our findings indicate that composting technology can transfer AMR from solid compost to gas phase and increase the risk of AMR transmission.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":null,"pages":null},"PeriodicalIF":12.2000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioaerosol emission characteristics and potential risks during composting: focus on pathogens and antimicrobial resistance\",\"authors\":\"Ruonan Ma, Lijuan Peng, Ruolan Tang, Tao Jiang, Jiali Chang, Guoxue Li, Jiani Wang, Yan Yang, Jing Yuan\",\"doi\":\"10.1016/j.jhazmat.2024.136466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we analyzed bioaerosol emission characteristics and potential risks of antimicrobial resistance (AMR) during composting using the impaction culture method and metagenomic sequencing. The results showed that the highly saturated water vapor in the emission gas mitigated particulate matter emission during the thermophilic period. About the bioaerosols, the airborne aerobic bacterial emissions were suppressed as composting enters the mature period, and the airborne fungi are usually present as single-cell or small-cell aggregates (< 3.3 μm). In addition, the microbial community structure in bioaerosols was stable and independent of composting time. Most importantly, the PM<sub>2.5</sub> in bioaerosols contained large amounts of antibiotic resistance genes (ARGs), potential pathogens, and multidrug resistant pathogens, which were diverse and present in high concentrations. Among them, ARGs concentrations encoding 21 antibiotics ranged from –4.50 to 0.70 ppm/m<sup>3</sup> (Log<sub>10</sub> ARGs). Among the 89 potential human pathogens detected, <em>Escherichia coli, Salmonella enterica, Klebsiella pneumoniae</em>, and <em>Staphylococcus aureus</em> were the only culturable potentially multidrug resistant pathogens carrying multiple ARGs encoding resistance at high concentrations (–0.57 to 1.15 ppm/m<sup>3</sup> (Log<sub>10</sub> ARGs)), and were more likely to persist and multiply in oligotrophic environments. Our findings indicate that composting technology can transfer AMR from solid compost to gas phase and increase the risk of AMR transmission.\",\"PeriodicalId\":361,\"journal\":{\"name\":\"Journal of Hazardous Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hazardous Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jhazmat.2024.136466\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.136466","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Bioaerosol emission characteristics and potential risks during composting: focus on pathogens and antimicrobial resistance
In this study, we analyzed bioaerosol emission characteristics and potential risks of antimicrobial resistance (AMR) during composting using the impaction culture method and metagenomic sequencing. The results showed that the highly saturated water vapor in the emission gas mitigated particulate matter emission during the thermophilic period. About the bioaerosols, the airborne aerobic bacterial emissions were suppressed as composting enters the mature period, and the airborne fungi are usually present as single-cell or small-cell aggregates (< 3.3 μm). In addition, the microbial community structure in bioaerosols was stable and independent of composting time. Most importantly, the PM2.5 in bioaerosols contained large amounts of antibiotic resistance genes (ARGs), potential pathogens, and multidrug resistant pathogens, which were diverse and present in high concentrations. Among them, ARGs concentrations encoding 21 antibiotics ranged from –4.50 to 0.70 ppm/m3 (Log10 ARGs). Among the 89 potential human pathogens detected, Escherichia coli, Salmonella enterica, Klebsiella pneumoniae, and Staphylococcus aureus were the only culturable potentially multidrug resistant pathogens carrying multiple ARGs encoding resistance at high concentrations (–0.57 to 1.15 ppm/m3 (Log10 ARGs)), and were more likely to persist and multiply in oligotrophic environments. Our findings indicate that composting technology can transfer AMR from solid compost to gas phase and increase the risk of AMR transmission.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.