通过电子束辐照改善 Bi2O3 的电化学性能

IF 2.8 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Materials Science: Materials in Electronics Pub Date : 2024-11-12 DOI:10.1007/s10854-024-13830-8
Shiju Yang, Libing Qian, Bo Zhang, Tingting Wang, Yunfei Li
{"title":"通过电子束辐照改善 Bi2O3 的电化学性能","authors":"Shiju Yang,&nbsp;Libing Qian,&nbsp;Bo Zhang,&nbsp;Tingting Wang,&nbsp;Yunfei Li","doi":"10.1007/s10854-024-13830-8","DOIUrl":null,"url":null,"abstract":"<div><p>The method of preparation is a critical factor affecting the structure and properties of Bi<sub>2</sub>O<sub>3</sub> material. In this work, Bi<sub>2</sub>O<sub>3</sub> was synthesized through calcination (denoted as Bi<sub>2</sub>O<sub>3</sub>–C) and hydrothermal methods (denoted as Bi<sub>2</sub>O<sub>3</sub>–H), utilizing bismuth-based metal–organic framework (Bi–MOF) as the precursor. As an electrode material for supercapacitors, Bi<sub>2</sub>O<sub>3</sub>–H demonstrated outstanding rate performance (515 F g<sup>−1</sup> at 50 A g<sup>−1</sup>) and remarkable cycle stability (74% retention after 4000 cycles). Subsequently, the Bi<sub>2</sub>O<sub>3</sub>-H underwent further processing through electron beam irradiation (EBI), resulting in a sample designated as Bi<sub>2</sub>O<sub>3</sub>–I. Following EBI treatment, the crystalline characteristics of Bi<sub>2</sub>O<sub>3</sub>–I and the concentration of oxygen vacancies (OVs) exhibited a significant improvement, thereby augmenting the material's conductivity. Because the positively charged OVs can quickly attract OH<sup>−</sup> from the electrolyte to the electrode surface, thereby accelerating the REDOX reaction, the current control mechanism of Bi<sub>2</sub>O<sub>3</sub>–I is partially derived from a surface-controlled pseudo-capacitance process. The irradiated Bi<sub>2</sub>O<sub>3</sub>-I electrode demonstrated superior capacitance (990 F<sup>−1</sup> at 2 A g<sup>−1</sup>), enhanced rate performance (585 F<sup>−1</sup> at 50 A g<sup>−1</sup>), and remarkable cycling stability (83% retention after 4000 cycles).</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":"35 32","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improvement of the electrochemical performance of Bi2O3 by electron beam irradiation\",\"authors\":\"Shiju Yang,&nbsp;Libing Qian,&nbsp;Bo Zhang,&nbsp;Tingting Wang,&nbsp;Yunfei Li\",\"doi\":\"10.1007/s10854-024-13830-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The method of preparation is a critical factor affecting the structure and properties of Bi<sub>2</sub>O<sub>3</sub> material. In this work, Bi<sub>2</sub>O<sub>3</sub> was synthesized through calcination (denoted as Bi<sub>2</sub>O<sub>3</sub>–C) and hydrothermal methods (denoted as Bi<sub>2</sub>O<sub>3</sub>–H), utilizing bismuth-based metal–organic framework (Bi–MOF) as the precursor. As an electrode material for supercapacitors, Bi<sub>2</sub>O<sub>3</sub>–H demonstrated outstanding rate performance (515 F g<sup>−1</sup> at 50 A g<sup>−1</sup>) and remarkable cycle stability (74% retention after 4000 cycles). Subsequently, the Bi<sub>2</sub>O<sub>3</sub>-H underwent further processing through electron beam irradiation (EBI), resulting in a sample designated as Bi<sub>2</sub>O<sub>3</sub>–I. Following EBI treatment, the crystalline characteristics of Bi<sub>2</sub>O<sub>3</sub>–I and the concentration of oxygen vacancies (OVs) exhibited a significant improvement, thereby augmenting the material's conductivity. Because the positively charged OVs can quickly attract OH<sup>−</sup> from the electrolyte to the electrode surface, thereby accelerating the REDOX reaction, the current control mechanism of Bi<sub>2</sub>O<sub>3</sub>–I is partially derived from a surface-controlled pseudo-capacitance process. The irradiated Bi<sub>2</sub>O<sub>3</sub>-I electrode demonstrated superior capacitance (990 F<sup>−1</sup> at 2 A g<sup>−1</sup>), enhanced rate performance (585 F<sup>−1</sup> at 50 A g<sup>−1</sup>), and remarkable cycling stability (83% retention after 4000 cycles).</p></div>\",\"PeriodicalId\":646,\"journal\":{\"name\":\"Journal of Materials Science: Materials in Electronics\",\"volume\":\"35 32\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science: Materials in Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10854-024-13830-8\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-024-13830-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

制备方法是影响 Bi2O3 材料结构和性能的关键因素。在这项工作中,利用铋基金属有机框架(Bi-MOF)作为前驱体,通过煅烧法(记为 Bi2O3-C)和水热法(记为 Bi2O3-H)合成了 Bi2O3。作为超级电容器的电极材料,Bi2O3-H 表现出卓越的速率性能(50 A g-1 时为 515 F g-1)和显著的循环稳定性(4000 次循环后保持率为 74%)。随后,Bi2O3-H 通过电子束辐照(EBI)进行了进一步处理,得到了被命名为 Bi2O3-I 的样品。经过电子束辐照处理后,Bi2O3-I 的结晶特性和氧空位(OVs)浓度都有了显著改善,从而提高了材料的导电性。由于带正电荷的氧空位能迅速将电解质中的 OH- 吸引到电极表面,从而加速 REDOX 反应,因此 Bi2O3-I 的电流控制机制部分源于表面控制的伪电容过程。经过辐照的 Bi2O3-I 电极显示出卓越的电容(2 A g-1 时为 990 F-1)、更高的速率性能(50 A g-1 时为 585 F-1)和显著的循环稳定性(4000 次循环后保持率为 83%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improvement of the electrochemical performance of Bi2O3 by electron beam irradiation

The method of preparation is a critical factor affecting the structure and properties of Bi2O3 material. In this work, Bi2O3 was synthesized through calcination (denoted as Bi2O3–C) and hydrothermal methods (denoted as Bi2O3–H), utilizing bismuth-based metal–organic framework (Bi–MOF) as the precursor. As an electrode material for supercapacitors, Bi2O3–H demonstrated outstanding rate performance (515 F g−1 at 50 A g−1) and remarkable cycle stability (74% retention after 4000 cycles). Subsequently, the Bi2O3-H underwent further processing through electron beam irradiation (EBI), resulting in a sample designated as Bi2O3–I. Following EBI treatment, the crystalline characteristics of Bi2O3–I and the concentration of oxygen vacancies (OVs) exhibited a significant improvement, thereby augmenting the material's conductivity. Because the positively charged OVs can quickly attract OH from the electrolyte to the electrode surface, thereby accelerating the REDOX reaction, the current control mechanism of Bi2O3–I is partially derived from a surface-controlled pseudo-capacitance process. The irradiated Bi2O3-I electrode demonstrated superior capacitance (990 F−1 at 2 A g−1), enhanced rate performance (585 F−1 at 50 A g−1), and remarkable cycling stability (83% retention after 4000 cycles).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science: Materials in Electronics
Journal of Materials Science: Materials in Electronics 工程技术-材料科学:综合
CiteScore
5.00
自引率
7.10%
发文量
1931
审稿时长
2 months
期刊介绍: The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.
期刊最新文献
Growth and characterization of semi-organic third-order nonlinear optical (NLO) succinic acid magnesium sulphate single crystals Enhanced electrochemical and transport properties of proton-conducting electrolytes through Y and Gd co-doping in BaCe0.6Zr0.2Y0.2-xGdxO3-δ Investigation of structure, morphology, dielectric, and optoelectronic properties of La-doped BaZrO3: experimental and DFT analysis Synthesis and characterization of NiTe-Ni2Te3 processed by mechanosynthesis at ambient conditions Crystal structure and electrical properties of LnCoO3 (Ln=La, Pr, Tb) perovskite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1