Neslihan Akcay, Ali Rıza Yıldırım, Deha Kesik, Valery F. Gremenok, Süleyman Özçelik, Abdullah Ceylan
{"title":"通过混合 PVD 沉积系统制备的 Cu2ZnSnS4 薄膜:Mo/CZTS 界面的多层石墨碳中间层","authors":"Neslihan Akcay, Ali Rıza Yıldırım, Deha Kesik, Valery F. Gremenok, Süleyman Özçelik, Abdullah Ceylan","doi":"10.1007/s10854-024-13854-0","DOIUrl":null,"url":null,"abstract":"<div><p>We report the insertion of a new intermediate layer, a multi-layered graphitic carbon (MLGC), at Mo/CZTS interface and its impact on the structural and morphological characteristics of the back interface and absorber. MLGC was synthesized directly on Mo-coated SLG under a gas mixture flow of H<sub>2</sub>/CH<sub>4</sub> at 550 °C via PECVD for 3 and 5 h. CZTS precursors were prepared on SLG/Mo and MLGC-coated SLG/Mo in a hybrid physical vapor deposition system, including evaporation and sputtering techniques, then subjected to sulfurization at 550 °C. The sheet resistance of back contact, microstructural parameters of the absorbers, the distributions of C and constituent elements were investigated. The diffraction peaks of the hexagonal Mo<sub>2</sub>C indicated the reaction between the C and Mo before the MLGC’s growth. Raman analysis confirmed the formation of the MLGC during the long deposition time after the Mo<sub>2</sub>C formation. With the addition of MLGC, the sheet resistance of the back contact decreased from 2 to 0.5 Ω/sq, and the crystallite size of the absorbers improved. Raman spectra from the interface exhibited that MoS<sub>2</sub> peaks’ intensities significantly reduced with increasing the growth time. This implied that the 5 h-deposited MLGC was more effective in blocking the reaction between Mo and S. The absorbers with the MLGC had more uniform surface morphologies, densely packed grains, and fewer secondary phases. FIB analysis revealed the separation of the absorber with the 5 h-deposited MLGC into two parts due to C impurity. More C diffusion into the absorber for this sample was confirmed by SIMS.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cu2ZnSnS4 films prepared by a hybrid PVD deposition system: a multi-layered graphitic carbon intermediate layer at the Mo/CZTS interface\",\"authors\":\"Neslihan Akcay, Ali Rıza Yıldırım, Deha Kesik, Valery F. Gremenok, Süleyman Özçelik, Abdullah Ceylan\",\"doi\":\"10.1007/s10854-024-13854-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We report the insertion of a new intermediate layer, a multi-layered graphitic carbon (MLGC), at Mo/CZTS interface and its impact on the structural and morphological characteristics of the back interface and absorber. MLGC was synthesized directly on Mo-coated SLG under a gas mixture flow of H<sub>2</sub>/CH<sub>4</sub> at 550 °C via PECVD for 3 and 5 h. CZTS precursors were prepared on SLG/Mo and MLGC-coated SLG/Mo in a hybrid physical vapor deposition system, including evaporation and sputtering techniques, then subjected to sulfurization at 550 °C. The sheet resistance of back contact, microstructural parameters of the absorbers, the distributions of C and constituent elements were investigated. The diffraction peaks of the hexagonal Mo<sub>2</sub>C indicated the reaction between the C and Mo before the MLGC’s growth. Raman analysis confirmed the formation of the MLGC during the long deposition time after the Mo<sub>2</sub>C formation. With the addition of MLGC, the sheet resistance of the back contact decreased from 2 to 0.5 Ω/sq, and the crystallite size of the absorbers improved. Raman spectra from the interface exhibited that MoS<sub>2</sub> peaks’ intensities significantly reduced with increasing the growth time. This implied that the 5 h-deposited MLGC was more effective in blocking the reaction between Mo and S. The absorbers with the MLGC had more uniform surface morphologies, densely packed grains, and fewer secondary phases. FIB analysis revealed the separation of the absorber with the 5 h-deposited MLGC into two parts due to C impurity. More C diffusion into the absorber for this sample was confirmed by SIMS.</p></div>\",\"PeriodicalId\":646,\"journal\":{\"name\":\"Journal of Materials Science: Materials in Electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science: Materials in Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10854-024-13854-0\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-024-13854-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Cu2ZnSnS4 films prepared by a hybrid PVD deposition system: a multi-layered graphitic carbon intermediate layer at the Mo/CZTS interface
We report the insertion of a new intermediate layer, a multi-layered graphitic carbon (MLGC), at Mo/CZTS interface and its impact on the structural and morphological characteristics of the back interface and absorber. MLGC was synthesized directly on Mo-coated SLG under a gas mixture flow of H2/CH4 at 550 °C via PECVD for 3 and 5 h. CZTS precursors were prepared on SLG/Mo and MLGC-coated SLG/Mo in a hybrid physical vapor deposition system, including evaporation and sputtering techniques, then subjected to sulfurization at 550 °C. The sheet resistance of back contact, microstructural parameters of the absorbers, the distributions of C and constituent elements were investigated. The diffraction peaks of the hexagonal Mo2C indicated the reaction between the C and Mo before the MLGC’s growth. Raman analysis confirmed the formation of the MLGC during the long deposition time after the Mo2C formation. With the addition of MLGC, the sheet resistance of the back contact decreased from 2 to 0.5 Ω/sq, and the crystallite size of the absorbers improved. Raman spectra from the interface exhibited that MoS2 peaks’ intensities significantly reduced with increasing the growth time. This implied that the 5 h-deposited MLGC was more effective in blocking the reaction between Mo and S. The absorbers with the MLGC had more uniform surface morphologies, densely packed grains, and fewer secondary phases. FIB analysis revealed the separation of the absorber with the 5 h-deposited MLGC into two parts due to C impurity. More C diffusion into the absorber for this sample was confirmed by SIMS.
期刊介绍:
The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.