Xu Wang , Yaning Che , Yonglan Xu , Yanan Wu , Hangzhou Xu , Li Li
{"title":"纳米零价铁在促进罗氏球菌降解二苯并呋喃中的作用机制ATP 生产与保护活性氧之间的权衡","authors":"Xu Wang , Yaning Che , Yonglan Xu , Yanan Wu , Hangzhou Xu , Li Li","doi":"10.1016/j.jhazmat.2024.136502","DOIUrl":null,"url":null,"abstract":"<div><div>Nano zero-valent iron (nZVI) can enhance pollutants biodegradation, but it displays toxicity towards microorganisms. Gram-positive (G<sup>+</sup>) bacteria exhibit greater resistance to nZVI than Gram-negative bacteria. However, mechanisms of nZVI accelerating pollutants degradation by G<sup>+</sup> bacteria remain unclear. Herein, we explored effects of nZVI on a G<sup>+</sup> bacterium, <em>Rhodococcus</em> sp. strain p52, and mechanisms by which nZVI accelerates biodegradation of dibenzofuran, a typical polycyclic aromatic compound. Electron microscopy and energy dispersive spectroscopy analysis revealed that nZVI could penetrate cell membranes, which caused damage and growth inhibition. nZVI promoted dibenzofuran biodegradation at certain concentrations, while higher concentration functioned later due to the delayed reactive oxygen species (ROS) mitigation. Transcriptomic analysis revealed that cells adopted response mechanisms to handle the elevated ROS induced by nZVI. ATP production was enhanced by accelerated dibenzofuran degradation, providing energy for protein synthesis related to antioxidant stress and damage repair. Meanwhile, electron transport chain (ETC) was adjusted to mitigate ROS accumulation, which involved downregulating expression of ETC complex I-related genes, as well as upregulating expression of the genes for the ROS-scavenging cytochrome bd complex and ETC complex II. These findings revealed the mechanisms underlying nZVI-enhanced biodegradation by G<sup>+</sup> bacteria, offering insights into optimizing bioremediation strategies involving nZVI.</div></div>","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"481 ","pages":"Article 136502"},"PeriodicalIF":12.2000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanisms of nano zero-valent iron in enhancing dibenzofuran degradation by a Rhodococcus sp.: Trade-offs between ATP production and protection against reactive oxygen species\",\"authors\":\"Xu Wang , Yaning Che , Yonglan Xu , Yanan Wu , Hangzhou Xu , Li Li\",\"doi\":\"10.1016/j.jhazmat.2024.136502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nano zero-valent iron (nZVI) can enhance pollutants biodegradation, but it displays toxicity towards microorganisms. Gram-positive (G<sup>+</sup>) bacteria exhibit greater resistance to nZVI than Gram-negative bacteria. However, mechanisms of nZVI accelerating pollutants degradation by G<sup>+</sup> bacteria remain unclear. Herein, we explored effects of nZVI on a G<sup>+</sup> bacterium, <em>Rhodococcus</em> sp. strain p52, and mechanisms by which nZVI accelerates biodegradation of dibenzofuran, a typical polycyclic aromatic compound. Electron microscopy and energy dispersive spectroscopy analysis revealed that nZVI could penetrate cell membranes, which caused damage and growth inhibition. nZVI promoted dibenzofuran biodegradation at certain concentrations, while higher concentration functioned later due to the delayed reactive oxygen species (ROS) mitigation. Transcriptomic analysis revealed that cells adopted response mechanisms to handle the elevated ROS induced by nZVI. ATP production was enhanced by accelerated dibenzofuran degradation, providing energy for protein synthesis related to antioxidant stress and damage repair. Meanwhile, electron transport chain (ETC) was adjusted to mitigate ROS accumulation, which involved downregulating expression of ETC complex I-related genes, as well as upregulating expression of the genes for the ROS-scavenging cytochrome bd complex and ETC complex II. These findings revealed the mechanisms underlying nZVI-enhanced biodegradation by G<sup>+</sup> bacteria, offering insights into optimizing bioremediation strategies involving nZVI.</div></div>\",\"PeriodicalId\":361,\"journal\":{\"name\":\"Journal of Hazardous Materials\",\"volume\":\"481 \",\"pages\":\"Article 136502\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hazardous Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304389424030814\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304389424030814","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Mechanisms of nano zero-valent iron in enhancing dibenzofuran degradation by a Rhodococcus sp.: Trade-offs between ATP production and protection against reactive oxygen species
Nano zero-valent iron (nZVI) can enhance pollutants biodegradation, but it displays toxicity towards microorganisms. Gram-positive (G+) bacteria exhibit greater resistance to nZVI than Gram-negative bacteria. However, mechanisms of nZVI accelerating pollutants degradation by G+ bacteria remain unclear. Herein, we explored effects of nZVI on a G+ bacterium, Rhodococcus sp. strain p52, and mechanisms by which nZVI accelerates biodegradation of dibenzofuran, a typical polycyclic aromatic compound. Electron microscopy and energy dispersive spectroscopy analysis revealed that nZVI could penetrate cell membranes, which caused damage and growth inhibition. nZVI promoted dibenzofuran biodegradation at certain concentrations, while higher concentration functioned later due to the delayed reactive oxygen species (ROS) mitigation. Transcriptomic analysis revealed that cells adopted response mechanisms to handle the elevated ROS induced by nZVI. ATP production was enhanced by accelerated dibenzofuran degradation, providing energy for protein synthesis related to antioxidant stress and damage repair. Meanwhile, electron transport chain (ETC) was adjusted to mitigate ROS accumulation, which involved downregulating expression of ETC complex I-related genes, as well as upregulating expression of the genes for the ROS-scavenging cytochrome bd complex and ETC complex II. These findings revealed the mechanisms underlying nZVI-enhanced biodegradation by G+ bacteria, offering insights into optimizing bioremediation strategies involving nZVI.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.