{"title":"D93和D289质子化状态对抑制剂-BACE1结合影响的分子机制:从多个独立的高斯加速分子动力学和深度学习中探索。","authors":"J Du, G Xu, W Zhang, J Cong, X Si, B Wei","doi":"10.1080/1062936X.2024.2419911","DOIUrl":null,"url":null,"abstract":"<p><p>BACE1 has been regarded as an essential drug design target for treating Alzheimer's disease (AD). Multiple independent Gaussian accelerated molecular dynamics simulations (GaMD), deep learning (DL), and molecular mechanics general Born surface area (MM-GBSA) method are integrated to elucidate the molecular mechanism underlying the effect of D93 and D289 protonation on binding of inhibitors OV6 and 4B2 to BACE1. The GaMD trajectory-based DL successfully identifies significant function domains. Dynamic analysis shows that the protonation of D93 and D289 strongly affects the structural flexibility and dynamic behaviour of BACE1. Free energy landscapes indicate that inhibitor-bound BACE1s have more conformational states in the protonated states than the wild-type (WT) BACE1, and show more binding poses of inhibitors. Binding affinities calculated using the MM-GBSA method indicate that the protonation of D93 and D289 highly disturbs the binding ability of inhibitors to BACE1. In addition, the protonation of two residues significantly affects the hydrogen bonding interactions (HBIs) of OV6 and 4B2 with BACE1, altering their binding activity to BACE1. The binding hot spots of BACE1 recognized by residue-based free energy estimations provide rational targeting sites for drug design towards BACE1. This study is anticipated to provide theoretical aids for drug development towards treatment of AD.</p>","PeriodicalId":21446,"journal":{"name":"SAR and QSAR in Environmental Research","volume":" ","pages":"919-947"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular mechanism underlying effect of D93 and D289 protonation states on inhibitor-BACE1 binding: exploration from multiple independent Gaussian accelerated molecular dynamics and deep learning.\",\"authors\":\"J Du, G Xu, W Zhang, J Cong, X Si, B Wei\",\"doi\":\"10.1080/1062936X.2024.2419911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>BACE1 has been regarded as an essential drug design target for treating Alzheimer's disease (AD). Multiple independent Gaussian accelerated molecular dynamics simulations (GaMD), deep learning (DL), and molecular mechanics general Born surface area (MM-GBSA) method are integrated to elucidate the molecular mechanism underlying the effect of D93 and D289 protonation on binding of inhibitors OV6 and 4B2 to BACE1. The GaMD trajectory-based DL successfully identifies significant function domains. Dynamic analysis shows that the protonation of D93 and D289 strongly affects the structural flexibility and dynamic behaviour of BACE1. Free energy landscapes indicate that inhibitor-bound BACE1s have more conformational states in the protonated states than the wild-type (WT) BACE1, and show more binding poses of inhibitors. Binding affinities calculated using the MM-GBSA method indicate that the protonation of D93 and D289 highly disturbs the binding ability of inhibitors to BACE1. In addition, the protonation of two residues significantly affects the hydrogen bonding interactions (HBIs) of OV6 and 4B2 with BACE1, altering their binding activity to BACE1. The binding hot spots of BACE1 recognized by residue-based free energy estimations provide rational targeting sites for drug design towards BACE1. This study is anticipated to provide theoretical aids for drug development towards treatment of AD.</p>\",\"PeriodicalId\":21446,\"journal\":{\"name\":\"SAR and QSAR in Environmental Research\",\"volume\":\" \",\"pages\":\"919-947\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SAR and QSAR in Environmental Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1062936X.2024.2419911\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAR and QSAR in Environmental Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1062936X.2024.2419911","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Molecular mechanism underlying effect of D93 and D289 protonation states on inhibitor-BACE1 binding: exploration from multiple independent Gaussian accelerated molecular dynamics and deep learning.
BACE1 has been regarded as an essential drug design target for treating Alzheimer's disease (AD). Multiple independent Gaussian accelerated molecular dynamics simulations (GaMD), deep learning (DL), and molecular mechanics general Born surface area (MM-GBSA) method are integrated to elucidate the molecular mechanism underlying the effect of D93 and D289 protonation on binding of inhibitors OV6 and 4B2 to BACE1. The GaMD trajectory-based DL successfully identifies significant function domains. Dynamic analysis shows that the protonation of D93 and D289 strongly affects the structural flexibility and dynamic behaviour of BACE1. Free energy landscapes indicate that inhibitor-bound BACE1s have more conformational states in the protonated states than the wild-type (WT) BACE1, and show more binding poses of inhibitors. Binding affinities calculated using the MM-GBSA method indicate that the protonation of D93 and D289 highly disturbs the binding ability of inhibitors to BACE1. In addition, the protonation of two residues significantly affects the hydrogen bonding interactions (HBIs) of OV6 and 4B2 with BACE1, altering their binding activity to BACE1. The binding hot spots of BACE1 recognized by residue-based free energy estimations provide rational targeting sites for drug design towards BACE1. This study is anticipated to provide theoretical aids for drug development towards treatment of AD.
期刊介绍:
SAR and QSAR in Environmental Research is an international journal welcoming papers on the fundamental and practical aspects of the structure-activity and structure-property relationships in the fields of environmental science, agrochemistry, toxicology, pharmacology and applied chemistry. A unique aspect of the journal is the focus on emerging techniques for the building of SAR and QSAR models in these widely varying fields. The scope of the journal includes, but is not limited to, the topics of topological and physicochemical descriptors, mathematical, statistical and graphical methods for data analysis, computer methods and programs, original applications and comparative studies. In addition to primary scientific papers, the journal contains reviews of books and software and news of conferences. Special issues on topics of current and widespread interest to the SAR and QSAR community will be published from time to time.