预测乳腺病变的恶性程度:利用微调卷积神经网络模型提高准确性。

IF 2.9 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING BMC Medical Imaging Pub Date : 2024-11-11 DOI:10.1186/s12880-024-01484-1
Li Li, Changjie Pan, Ming Zhang, Dong Shen, Guangyuan He, Mingzhu Meng
{"title":"预测乳腺病变的恶性程度:利用微调卷积神经网络模型提高准确性。","authors":"Li Li, Changjie Pan, Ming Zhang, Dong Shen, Guangyuan He, Mingzhu Meng","doi":"10.1186/s12880-024-01484-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study aims to explore the accuracy of Convolutional Neural Network (CNN) models in predicting malignancy in Dynamic Contrast-Enhanced Breast Magnetic Resonance Imaging (DCE-BMRI).</p><p><strong>Methods: </strong>A total of 273 benign lesions (benign group) and 274 malignant lesions (malignant group) were collected and randomly divided into a training set (246 benign and 245 malignant lesions) and a testing set (28 benign and 28 malignant lesions) in a 9:1 ratio. An additional 53 lesions from 53 patients were designated as the validation set. Five models-VGG16, VGG19, DenseNet201, ResNet50, and MobileNetV2-were evaluated. Model performance was assessed using accuracy (Ac) in the training and testing sets, and precision (Pr), recall (Rc), F1 score (F1), and area under the receiver operating characteristic curve (AUC) in the validation set.</p><p><strong>Results: </strong>The accuracy of VGG19 on the test set (0.96) is higher than that of VGG16 (0.91), DenseNet201 (0.91), ResNet50 (0.67), and MobileNetV2 (0.88). For the validation set, VGG19 achieved higher performance metrics (Pr 0.75, Rc 0.76, F1 0.73, AUC 0.76) compared to the other models, specifically VGG16 (Pr 0.73, Rc 0.75, F1 0.70, AUC 0.73), DenseNet201 (Pr 0.71, Rc 0.74, F1 0.69, AUC 0.71), ResNet50 (Pr 0.65, Rc 0.68, F1 0.60, AUC 0.65), and MobileNetV2 (Pr 0.73, Rc 0.75, F1 0.71, AUC 0.73). S4 model achieved higher performance metrics (Pr 0.89, Rc 0.88, F1 0.87, AUC 0.89) compared to the other four fine-tuned models, specifically S1 (Pr 0.75, Rc 0.76, F1 0.74, AUC 0.75), S2 (Pr 0.77, Rc 0.79, F1 0.75, AUC 0.77), S3 (Pr 0.76, Rc 0.76, F1 0.73, AUC 0.75), and S5 (Pr 0.77, Rc 0.79, F1 0.75, AUC 0.77). Additionally, S4 model showed the lowest loss value in the testing set. Notably, the AUC of S4 for BI-RADS 3 was 0.90 and for BI-RADS 4 was 0.86, both significantly higher than the 0.65 AUC for BI-RADS 5.</p><p><strong>Conclusions: </strong>The S4 model we propose has demonstrated superior performance in predicting the likelihood of malignancy in DCE-BMRI, making it a promising candidate for clinical application in patients with breast diseases. However, further validation is essential, highlighting the need for additional data to confirm its efficacy.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":"24 1","pages":"303"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552211/pdf/","citationCount":"0","resultStr":"{\"title\":\"Predicting malignancy in breast lesions: enhancing accuracy with fine-tuned convolutional neural network models.\",\"authors\":\"Li Li, Changjie Pan, Ming Zhang, Dong Shen, Guangyuan He, Mingzhu Meng\",\"doi\":\"10.1186/s12880-024-01484-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>This study aims to explore the accuracy of Convolutional Neural Network (CNN) models in predicting malignancy in Dynamic Contrast-Enhanced Breast Magnetic Resonance Imaging (DCE-BMRI).</p><p><strong>Methods: </strong>A total of 273 benign lesions (benign group) and 274 malignant lesions (malignant group) were collected and randomly divided into a training set (246 benign and 245 malignant lesions) and a testing set (28 benign and 28 malignant lesions) in a 9:1 ratio. An additional 53 lesions from 53 patients were designated as the validation set. Five models-VGG16, VGG19, DenseNet201, ResNet50, and MobileNetV2-were evaluated. Model performance was assessed using accuracy (Ac) in the training and testing sets, and precision (Pr), recall (Rc), F1 score (F1), and area under the receiver operating characteristic curve (AUC) in the validation set.</p><p><strong>Results: </strong>The accuracy of VGG19 on the test set (0.96) is higher than that of VGG16 (0.91), DenseNet201 (0.91), ResNet50 (0.67), and MobileNetV2 (0.88). For the validation set, VGG19 achieved higher performance metrics (Pr 0.75, Rc 0.76, F1 0.73, AUC 0.76) compared to the other models, specifically VGG16 (Pr 0.73, Rc 0.75, F1 0.70, AUC 0.73), DenseNet201 (Pr 0.71, Rc 0.74, F1 0.69, AUC 0.71), ResNet50 (Pr 0.65, Rc 0.68, F1 0.60, AUC 0.65), and MobileNetV2 (Pr 0.73, Rc 0.75, F1 0.71, AUC 0.73). S4 model achieved higher performance metrics (Pr 0.89, Rc 0.88, F1 0.87, AUC 0.89) compared to the other four fine-tuned models, specifically S1 (Pr 0.75, Rc 0.76, F1 0.74, AUC 0.75), S2 (Pr 0.77, Rc 0.79, F1 0.75, AUC 0.77), S3 (Pr 0.76, Rc 0.76, F1 0.73, AUC 0.75), and S5 (Pr 0.77, Rc 0.79, F1 0.75, AUC 0.77). Additionally, S4 model showed the lowest loss value in the testing set. Notably, the AUC of S4 for BI-RADS 3 was 0.90 and for BI-RADS 4 was 0.86, both significantly higher than the 0.65 AUC for BI-RADS 5.</p><p><strong>Conclusions: </strong>The S4 model we propose has demonstrated superior performance in predicting the likelihood of malignancy in DCE-BMRI, making it a promising candidate for clinical application in patients with breast diseases. However, further validation is essential, highlighting the need for additional data to confirm its efficacy.</p>\",\"PeriodicalId\":9020,\"journal\":{\"name\":\"BMC Medical Imaging\",\"volume\":\"24 1\",\"pages\":\"303\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552211/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Medical Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12880-024-01484-1\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12880-024-01484-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

研究背景本研究旨在探讨卷积神经网络(CNN)模型在动态对比增强乳腺磁共振成像(DCE-BMRI)中预测恶性病变的准确性:共收集了 273 个良性病灶(良性组)和 274 个恶性病灶(恶性组),并按 9:1 的比例随机分为训练集(246 个良性病灶和 245 个恶性病灶)和测试集(28 个良性病灶和 28 个恶性病灶)。另外 53 名患者的 53 个病灶被指定为验证集。评估了五个模型-VGG16、VGG19、DenseNet201、ResNet50 和 MobileNetV2。使用训练集和测试集中的准确度(Ac)以及验证集中的精确度(Pr)、召回率(Rc)、F1 分数(F1)和接收器工作特征曲线下面积(AUC)评估模型性能:VGG19 在测试集上的精确度(0.96)高于 VGG16(0.91)、DenseNet201(0.91)、ResNet50(0.67)和 MobileNetV2(0.88)。在验证集上,VGG19 的性能指标(Pr 0.75、Rc 0.76、F1 0.73、AUC 0.76)高于其他模型,特别是 VGG16(Pr 0.73、Rc 0.75,F1 0.70,AUC 0.73)、DenseNet201(Pr 0.71,Rc 0.74,F1 0.69,AUC 0.71)、ResNet50(Pr 0.65,Rc 0.68,F1 0.60,AUC 0.65)和 MobileNetV2(Pr 0.73,Rc 0.75,F1 0.71,AUC 0.73)。与其他四个微调模型相比,S4 模型获得了更高的性能指标(Pr 0.89,Rc 0.88,F1 0.87,AUC 0.89),特别是 S1(Pr 0.75,Rc 0.76,F1 0.74,AUC 0.75)、S2(Pr 0.77,Rc 0.79,F1 0.75,AUC 0.77)、S3(Pr 0.76,Rc 0.76,F1 0.73,AUC 0.75)和 S5(Pr 0.77,Rc 0.79,F1 0.75,AUC 0.77)。此外,S4 模型在测试集中的损失值最低。值得注意的是,S4 对 BI-RADS 3 的 AUC 为 0.90,对 BI-RADS 4 的 AUC 为 0.86,均显著高于对 BI-RADS 5 的 0.65 AUC:我们提出的 S4 模型在预测 DCE-BMRI 中恶性肿瘤的可能性方面表现出色,有望在乳腺疾病患者中得到临床应用。然而,进一步的验证是必不可少的,因此需要更多的数据来证实其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting malignancy in breast lesions: enhancing accuracy with fine-tuned convolutional neural network models.

Background: This study aims to explore the accuracy of Convolutional Neural Network (CNN) models in predicting malignancy in Dynamic Contrast-Enhanced Breast Magnetic Resonance Imaging (DCE-BMRI).

Methods: A total of 273 benign lesions (benign group) and 274 malignant lesions (malignant group) were collected and randomly divided into a training set (246 benign and 245 malignant lesions) and a testing set (28 benign and 28 malignant lesions) in a 9:1 ratio. An additional 53 lesions from 53 patients were designated as the validation set. Five models-VGG16, VGG19, DenseNet201, ResNet50, and MobileNetV2-were evaluated. Model performance was assessed using accuracy (Ac) in the training and testing sets, and precision (Pr), recall (Rc), F1 score (F1), and area under the receiver operating characteristic curve (AUC) in the validation set.

Results: The accuracy of VGG19 on the test set (0.96) is higher than that of VGG16 (0.91), DenseNet201 (0.91), ResNet50 (0.67), and MobileNetV2 (0.88). For the validation set, VGG19 achieved higher performance metrics (Pr 0.75, Rc 0.76, F1 0.73, AUC 0.76) compared to the other models, specifically VGG16 (Pr 0.73, Rc 0.75, F1 0.70, AUC 0.73), DenseNet201 (Pr 0.71, Rc 0.74, F1 0.69, AUC 0.71), ResNet50 (Pr 0.65, Rc 0.68, F1 0.60, AUC 0.65), and MobileNetV2 (Pr 0.73, Rc 0.75, F1 0.71, AUC 0.73). S4 model achieved higher performance metrics (Pr 0.89, Rc 0.88, F1 0.87, AUC 0.89) compared to the other four fine-tuned models, specifically S1 (Pr 0.75, Rc 0.76, F1 0.74, AUC 0.75), S2 (Pr 0.77, Rc 0.79, F1 0.75, AUC 0.77), S3 (Pr 0.76, Rc 0.76, F1 0.73, AUC 0.75), and S5 (Pr 0.77, Rc 0.79, F1 0.75, AUC 0.77). Additionally, S4 model showed the lowest loss value in the testing set. Notably, the AUC of S4 for BI-RADS 3 was 0.90 and for BI-RADS 4 was 0.86, both significantly higher than the 0.65 AUC for BI-RADS 5.

Conclusions: The S4 model we propose has demonstrated superior performance in predicting the likelihood of malignancy in DCE-BMRI, making it a promising candidate for clinical application in patients with breast diseases. However, further validation is essential, highlighting the need for additional data to confirm its efficacy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Medical Imaging
BMC Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.60
自引率
3.70%
发文量
198
审稿时长
27 weeks
期刊介绍: BMC Medical Imaging is an open access journal publishing original peer-reviewed research articles in the development, evaluation, and use of imaging techniques and image processing tools to diagnose and manage disease.
期刊最新文献
In vitro detection of cancer cells using a novel fluorescent choline derivative. Prediction of esophageal fistula in radiotherapy/chemoradiotherapy for patients with advanced esophageal cancer by a clinical-deep learning radiomics model : Prediction of esophageal fistula in radiotherapy/chemoradiotherapy patients. Prior information guided deep-learning model for tumor bed segmentation in breast cancer radiotherapy. The predictive value of nomogram for adnexal cystic-solid masses based on O-RADS US, clinical and laboratory indicators. The study on ultrasound image classification using a dual-branch model based on Resnet50 guided by U-net segmentation results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1