Nathan J M Laxague, Christopher J Zappa, Shantanu Soumya, Oliver Wurl
{"title":"生物浮渣对海浪的压制。","authors":"Nathan J M Laxague, Christopher J Zappa, Shantanu Soumya, Oliver Wurl","doi":"10.1098/rsif.2024.0385","DOIUrl":null,"url":null,"abstract":"<p><p>Ocean waves are significantly damped by biogenic surfactants, which accumulate at the sea surface in every ocean basin. The growth, development, and breaking of short wind-driven surface waves are key mediators of the air-sea exchange of momentum, heat and trace gases. The mechanisms through which surfactants suppress waves have been studied in great detail through careful laboratory experimentation in quasi-one-dimensional wave tanks. However, the spatial scales over which this damping occurs in structurally complex surfactant slicks on the real ocean have not been resolved. Here, we present the results of field observations of the spatial response of decimetre- to millimetre-scale waves to biogenic surfactant slicks. We found that wave damping in organic material-rich coastal waters resulted in a net (spatio-temporally averaged) reduction of approximately 50% in wave slope variance relative to the open ocean for low to moderate wind speeds. This reduction of wave slope variance is understood to result in a corresponding reduction in momentum input to the wave field. This significant effect had thus far evaded quantification due in large part to the enormous range of scales required for its description-spanning the sea surface microlayer to the ocean submesoscale.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"21 220","pages":"20240385"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557231/pdf/","citationCount":"0","resultStr":"{\"title\":\"The suppression of ocean waves by biogenic slicks.\",\"authors\":\"Nathan J M Laxague, Christopher J Zappa, Shantanu Soumya, Oliver Wurl\",\"doi\":\"10.1098/rsif.2024.0385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ocean waves are significantly damped by biogenic surfactants, which accumulate at the sea surface in every ocean basin. The growth, development, and breaking of short wind-driven surface waves are key mediators of the air-sea exchange of momentum, heat and trace gases. The mechanisms through which surfactants suppress waves have been studied in great detail through careful laboratory experimentation in quasi-one-dimensional wave tanks. However, the spatial scales over which this damping occurs in structurally complex surfactant slicks on the real ocean have not been resolved. Here, we present the results of field observations of the spatial response of decimetre- to millimetre-scale waves to biogenic surfactant slicks. We found that wave damping in organic material-rich coastal waters resulted in a net (spatio-temporally averaged) reduction of approximately 50% in wave slope variance relative to the open ocean for low to moderate wind speeds. This reduction of wave slope variance is understood to result in a corresponding reduction in momentum input to the wave field. This significant effect had thus far evaded quantification due in large part to the enormous range of scales required for its description-spanning the sea surface microlayer to the ocean submesoscale.</p>\",\"PeriodicalId\":17488,\"journal\":{\"name\":\"Journal of The Royal Society Interface\",\"volume\":\"21 220\",\"pages\":\"20240385\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557231/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Royal Society Interface\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsif.2024.0385\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0385","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
The suppression of ocean waves by biogenic slicks.
Ocean waves are significantly damped by biogenic surfactants, which accumulate at the sea surface in every ocean basin. The growth, development, and breaking of short wind-driven surface waves are key mediators of the air-sea exchange of momentum, heat and trace gases. The mechanisms through which surfactants suppress waves have been studied in great detail through careful laboratory experimentation in quasi-one-dimensional wave tanks. However, the spatial scales over which this damping occurs in structurally complex surfactant slicks on the real ocean have not been resolved. Here, we present the results of field observations of the spatial response of decimetre- to millimetre-scale waves to biogenic surfactant slicks. We found that wave damping in organic material-rich coastal waters resulted in a net (spatio-temporally averaged) reduction of approximately 50% in wave slope variance relative to the open ocean for low to moderate wind speeds. This reduction of wave slope variance is understood to result in a corresponding reduction in momentum input to the wave field. This significant effect had thus far evaded quantification due in large part to the enormous range of scales required for its description-spanning the sea surface microlayer to the ocean submesoscale.
期刊介绍:
J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.