{"title":"基于改进的 U-Net 模型的宽视场荧光图像切片网络","authors":"Shiqing Yao, Meiling Guan, Wei Ren, Peng Xi, Meiqi Li, Mingjian Sun","doi":"10.1002/jemt.24732","DOIUrl":null,"url":null,"abstract":"<p><p>Fluorescence imaging stands as a pivotal component in biomedical research, requiring the elimination of out-of-focus background noise resulting from wide-field volumetric illumination of the whole field-of-view and scattering within thick biological tissues. Traditional methods struggle to effectively address varying degrees of defocusing in fluorescence images. This study introduces the utilization of upU-Net, 3D U-Net, and 3D upU-Net as defocusing networks tailored for 2D and 3D wide-field fluorescence images, yielding notable enhancements. These advancements facilitate more economically viable confocal microscopy, delivering significant advantages to biologists presently utilizing wide-field fluorescence microscopy.</p>","PeriodicalId":18684,"journal":{"name":"Microscopy Research and Technique","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Slicing Network for Wide-Field Fluorescence Image Based on the Improved U-Net Model.\",\"authors\":\"Shiqing Yao, Meiling Guan, Wei Ren, Peng Xi, Meiqi Li, Mingjian Sun\",\"doi\":\"10.1002/jemt.24732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fluorescence imaging stands as a pivotal component in biomedical research, requiring the elimination of out-of-focus background noise resulting from wide-field volumetric illumination of the whole field-of-view and scattering within thick biological tissues. Traditional methods struggle to effectively address varying degrees of defocusing in fluorescence images. This study introduces the utilization of upU-Net, 3D U-Net, and 3D upU-Net as defocusing networks tailored for 2D and 3D wide-field fluorescence images, yielding notable enhancements. These advancements facilitate more economically viable confocal microscopy, delivering significant advantages to biologists presently utilizing wide-field fluorescence microscopy.</p>\",\"PeriodicalId\":18684,\"journal\":{\"name\":\"Microscopy Research and Technique\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microscopy Research and Technique\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/jemt.24732\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy Research and Technique","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/jemt.24732","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
荧光成像是生物医学研究的重要组成部分,需要消除因整个视场的宽场容积照明和厚生物组织内的散射而产生的离焦背景噪声。传统方法难以有效解决荧光图像中不同程度的散焦问题。本研究介绍了利用 upU-Net、3D U-Net 和 3D upU-Net 作为为二维和三维宽视场荧光图像量身定制的散焦网络,取得了显著的改进。这些进步促进了更经济可行的共聚焦显微镜技术,为目前使用宽视场荧光显微镜的生物学家带来了显著优势。
Slicing Network for Wide-Field Fluorescence Image Based on the Improved U-Net Model.
Fluorescence imaging stands as a pivotal component in biomedical research, requiring the elimination of out-of-focus background noise resulting from wide-field volumetric illumination of the whole field-of-view and scattering within thick biological tissues. Traditional methods struggle to effectively address varying degrees of defocusing in fluorescence images. This study introduces the utilization of upU-Net, 3D U-Net, and 3D upU-Net as defocusing networks tailored for 2D and 3D wide-field fluorescence images, yielding notable enhancements. These advancements facilitate more economically viable confocal microscopy, delivering significant advantages to biologists presently utilizing wide-field fluorescence microscopy.
期刊介绍:
Microscopy Research and Technique (MRT) publishes articles on all aspects of advanced microscopy original architecture and methodologies with applications in the biological, clinical, chemical, and materials sciences. Original basic and applied research as well as technical papers dealing with the various subsets of microscopy are encouraged. MRT is the right form for those developing new microscopy methods or using the microscope to answer key questions in basic and applied research.