基于改进的 U-Net 模型的宽视场荧光图像切片网络

IF 2 3区 工程技术 Q2 ANATOMY & MORPHOLOGY Microscopy Research and Technique Pub Date : 2024-11-09 DOI:10.1002/jemt.24732
Shiqing Yao, Meiling Guan, Wei Ren, Peng Xi, Meiqi Li, Mingjian Sun
{"title":"基于改进的 U-Net 模型的宽视场荧光图像切片网络","authors":"Shiqing Yao, Meiling Guan, Wei Ren, Peng Xi, Meiqi Li, Mingjian Sun","doi":"10.1002/jemt.24732","DOIUrl":null,"url":null,"abstract":"<p><p>Fluorescence imaging stands as a pivotal component in biomedical research, requiring the elimination of out-of-focus background noise resulting from wide-field volumetric illumination of the whole field-of-view and scattering within thick biological tissues. Traditional methods struggle to effectively address varying degrees of defocusing in fluorescence images. This study introduces the utilization of upU-Net, 3D U-Net, and 3D upU-Net as defocusing networks tailored for 2D and 3D wide-field fluorescence images, yielding notable enhancements. These advancements facilitate more economically viable confocal microscopy, delivering significant advantages to biologists presently utilizing wide-field fluorescence microscopy.</p>","PeriodicalId":18684,"journal":{"name":"Microscopy Research and Technique","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Slicing Network for Wide-Field Fluorescence Image Based on the Improved U-Net Model.\",\"authors\":\"Shiqing Yao, Meiling Guan, Wei Ren, Peng Xi, Meiqi Li, Mingjian Sun\",\"doi\":\"10.1002/jemt.24732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fluorescence imaging stands as a pivotal component in biomedical research, requiring the elimination of out-of-focus background noise resulting from wide-field volumetric illumination of the whole field-of-view and scattering within thick biological tissues. Traditional methods struggle to effectively address varying degrees of defocusing in fluorescence images. This study introduces the utilization of upU-Net, 3D U-Net, and 3D upU-Net as defocusing networks tailored for 2D and 3D wide-field fluorescence images, yielding notable enhancements. These advancements facilitate more economically viable confocal microscopy, delivering significant advantages to biologists presently utilizing wide-field fluorescence microscopy.</p>\",\"PeriodicalId\":18684,\"journal\":{\"name\":\"Microscopy Research and Technique\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microscopy Research and Technique\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/jemt.24732\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy Research and Technique","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/jemt.24732","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

荧光成像是生物医学研究的重要组成部分,需要消除因整个视场的宽场容积照明和厚生物组织内的散射而产生的离焦背景噪声。传统方法难以有效解决荧光图像中不同程度的散焦问题。本研究介绍了利用 upU-Net、3D U-Net 和 3D upU-Net 作为为二维和三维宽视场荧光图像量身定制的散焦网络,取得了显著的改进。这些进步促进了更经济可行的共聚焦显微镜技术,为目前使用宽视场荧光显微镜的生物学家带来了显著优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Slicing Network for Wide-Field Fluorescence Image Based on the Improved U-Net Model.

Fluorescence imaging stands as a pivotal component in biomedical research, requiring the elimination of out-of-focus background noise resulting from wide-field volumetric illumination of the whole field-of-view and scattering within thick biological tissues. Traditional methods struggle to effectively address varying degrees of defocusing in fluorescence images. This study introduces the utilization of upU-Net, 3D U-Net, and 3D upU-Net as defocusing networks tailored for 2D and 3D wide-field fluorescence images, yielding notable enhancements. These advancements facilitate more economically viable confocal microscopy, delivering significant advantages to biologists presently utilizing wide-field fluorescence microscopy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microscopy Research and Technique
Microscopy Research and Technique 医学-解剖学与形态学
CiteScore
5.30
自引率
20.00%
发文量
233
审稿时长
4.7 months
期刊介绍: Microscopy Research and Technique (MRT) publishes articles on all aspects of advanced microscopy original architecture and methodologies with applications in the biological, clinical, chemical, and materials sciences. Original basic and applied research as well as technical papers dealing with the various subsets of microscopy are encouraged. MRT is the right form for those developing new microscopy methods or using the microscope to answer key questions in basic and applied research.
期刊最新文献
In Situ Surface Exsolution of Chang'e-5 Lunar Soil Architected by the Trinity Effect of Electron Beam. The Melliferous Potential of the Mountainous Region of Azad Kashmir, Pakistan: Pollen Profiling of Honey Using Microscopy. Ultrastructural and Functional Organization of Maxillary Palps in Ladybird Species (Coleoptera: Coccinellidae) With Different Feeding Preferences. Green Synthesis of Selenium Nanoparticles Utilizing Drimia indica: Insights Into Anticancer and Antimicrobial Activities. Scanning Electron Microscopy of the Oropharyngeal Floor of Northern Bobwhite (Colinus virginianus, Linnaeus, 1758) Focusing on the Numerical and Regional Distribution of the Taste Buds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1