{"title":"棉花卷叶 Multan 病毒蛋白质与 Gossypium hirsutum L.转录基因沉默因子之间相互作用的硅学研究","authors":"Heena Jain, Ekta Rawal, Prabhat Kumar, Satish Kumar Sain, Priyanka Siwach","doi":"10.1007/s00239-024-10216-6","DOIUrl":null,"url":null,"abstract":"<p><p>The highly dynamic nature of the Cotton leaf curl virus (CLCuV) complex (causing Cotton leaf curl disease, a significant global threat to cotton) presents a formidable challenge in unraveling precise molecular mechanisms governing viral-host interactions. To address this challenge, the present study investigated the molecular interactions of 6 viral proteins (Rep, TrAP, C4, C5, V2, and βC1) with 18 cotton Transcriptional Gene Silencing (TGS) proteins. Protein-protein dockings conducted for different viral-host protein pairs using Clustered Protein Docking (ClusPro) and Global RAnge Molecular Matching (GRAMM) (216 docking runs), revealed variable binding energies. The interacting pairs with the highest binding affinities were further scrutinized using bioCOmplexes COntact MAPS (COCOMAPS) server, which revealed robust binding of three viral proteins- TrAP, C4, and C5 with 14 TGS proteins, identifying several novel interactions (not reported yet by earlier studies), such as TrAP targeting DCL3, HDA6, and SUVH6; C4 targeting RAV2, CMT2, and DMT1; and C5 targeting CLSY1, RDR1, RDR2, AGO4, SAMS, and SAHH. Visualizing these interactions in PyMol provided a detailed insight into interacting regions. Further assessment of the impact of 18 variants of the C4 protein on interaction with CMT2 revealed no correlation between sequence variation and docking energies. However, conserved residues in the C4 binding regions emerged as potential targets for disrupting viral integrity. Hence, this study provides valuable insights into the viral-host interplay, advancing our understanding of Cotton leaf curl Multan virus pathogenicity and opening novel avenues for devising various antiviral strategies by targeting the host-viral interacting regions after experimental validation.</p>","PeriodicalId":16366,"journal":{"name":"Journal of Molecular Evolution","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Silico Investigation of the Interactions Between Cotton Leaf Curl Multan Virus Proteins and the Transcriptional Gene Silencing Factors of Gossypium hirsutum L.\",\"authors\":\"Heena Jain, Ekta Rawal, Prabhat Kumar, Satish Kumar Sain, Priyanka Siwach\",\"doi\":\"10.1007/s00239-024-10216-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The highly dynamic nature of the Cotton leaf curl virus (CLCuV) complex (causing Cotton leaf curl disease, a significant global threat to cotton) presents a formidable challenge in unraveling precise molecular mechanisms governing viral-host interactions. To address this challenge, the present study investigated the molecular interactions of 6 viral proteins (Rep, TrAP, C4, C5, V2, and βC1) with 18 cotton Transcriptional Gene Silencing (TGS) proteins. Protein-protein dockings conducted for different viral-host protein pairs using Clustered Protein Docking (ClusPro) and Global RAnge Molecular Matching (GRAMM) (216 docking runs), revealed variable binding energies. The interacting pairs with the highest binding affinities were further scrutinized using bioCOmplexes COntact MAPS (COCOMAPS) server, which revealed robust binding of three viral proteins- TrAP, C4, and C5 with 14 TGS proteins, identifying several novel interactions (not reported yet by earlier studies), such as TrAP targeting DCL3, HDA6, and SUVH6; C4 targeting RAV2, CMT2, and DMT1; and C5 targeting CLSY1, RDR1, RDR2, AGO4, SAMS, and SAHH. Visualizing these interactions in PyMol provided a detailed insight into interacting regions. Further assessment of the impact of 18 variants of the C4 protein on interaction with CMT2 revealed no correlation between sequence variation and docking energies. However, conserved residues in the C4 binding regions emerged as potential targets for disrupting viral integrity. Hence, this study provides valuable insights into the viral-host interplay, advancing our understanding of Cotton leaf curl Multan virus pathogenicity and opening novel avenues for devising various antiviral strategies by targeting the host-viral interacting regions after experimental validation.</p>\",\"PeriodicalId\":16366,\"journal\":{\"name\":\"Journal of Molecular Evolution\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00239-024-10216-6\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00239-024-10216-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
In Silico Investigation of the Interactions Between Cotton Leaf Curl Multan Virus Proteins and the Transcriptional Gene Silencing Factors of Gossypium hirsutum L.
The highly dynamic nature of the Cotton leaf curl virus (CLCuV) complex (causing Cotton leaf curl disease, a significant global threat to cotton) presents a formidable challenge in unraveling precise molecular mechanisms governing viral-host interactions. To address this challenge, the present study investigated the molecular interactions of 6 viral proteins (Rep, TrAP, C4, C5, V2, and βC1) with 18 cotton Transcriptional Gene Silencing (TGS) proteins. Protein-protein dockings conducted for different viral-host protein pairs using Clustered Protein Docking (ClusPro) and Global RAnge Molecular Matching (GRAMM) (216 docking runs), revealed variable binding energies. The interacting pairs with the highest binding affinities were further scrutinized using bioCOmplexes COntact MAPS (COCOMAPS) server, which revealed robust binding of three viral proteins- TrAP, C4, and C5 with 14 TGS proteins, identifying several novel interactions (not reported yet by earlier studies), such as TrAP targeting DCL3, HDA6, and SUVH6; C4 targeting RAV2, CMT2, and DMT1; and C5 targeting CLSY1, RDR1, RDR2, AGO4, SAMS, and SAHH. Visualizing these interactions in PyMol provided a detailed insight into interacting regions. Further assessment of the impact of 18 variants of the C4 protein on interaction with CMT2 revealed no correlation between sequence variation and docking energies. However, conserved residues in the C4 binding regions emerged as potential targets for disrupting viral integrity. Hence, this study provides valuable insights into the viral-host interplay, advancing our understanding of Cotton leaf curl Multan virus pathogenicity and opening novel avenues for devising various antiviral strategies by targeting the host-viral interacting regions after experimental validation.
期刊介绍:
Journal of Molecular Evolution covers experimental, computational, and theoretical work aimed at deciphering features of molecular evolution and the processes bearing on these features, from the initial formation of macromolecular systems through their evolution at the molecular level, the co-evolution of their functions in cellular and organismal systems, and their influence on organismal adaptation, speciation, and ecology. Topics addressed include the evolution of informational macromolecules and their relation to more complex levels of biological organization, including populations and taxa, as well as the molecular basis for the evolution of ecological interactions of species and the use of molecular data to infer fundamental processes in evolutionary ecology. This coverage accommodates such subfields as new genome sequences, comparative structural and functional genomics, population genetics, the molecular evolution of development, the evolution of gene regulation and gene interaction networks, and in vitro evolution of DNA and RNA, molecular evolutionary ecology, and the development of methods and theory that enable molecular evolutionary inference, including but not limited to, phylogenetic methods.