金属阳离子和低 pH 对 DNA 形态的协同调控

IF 2 3区 工程技术 Q2 ANATOMY & MORPHOLOGY Microscopy Research and Technique Pub Date : 2024-11-13 DOI:10.1002/jemt.24737
Xia Wang, Ying Wang, Mingyan Gao, Fengyan Hou, Junxi Wang, Jingyu Wang, Ye Li, Zuobin Wang
{"title":"金属阳离子和低 pH 对 DNA 形态的协同调控","authors":"Xia Wang, Ying Wang, Mingyan Gao, Fengyan Hou, Junxi Wang, Jingyu Wang, Ye Li, Zuobin Wang","doi":"10.1002/jemt.24737","DOIUrl":null,"url":null,"abstract":"<p><p>As a flexible biomolecule, the spatial structure of DNA is variable. The effects of concentration, metal cations, and low pH on DNA morphology were studied. For the high concentration of DNA, the cross-linked branch-like or network structures were formed. For the low concentration of DNA, isolated, random and freely loose linear DNA chains were presented. These phenomena were related to the intermolecular interactions. Branch-like DNA structures were reformed with the addition of metal cations to the low concentration of DNA at pH 7-4, suggesting the negative charges of DNA were neutralized, thus transforming the spatial structure of DNA into a low charge density morphology and presenting the hypochromic effect. Compared to the monovalent alkaline metal cations, more negative charges of DNA were screened by the alkaline-earth metal cations. Distinct DNA morphologies were observed for pH 3. The linear and condensed DNA structures were simultaneously observed, which was met regardless of the solution with or without the addition of metal cations. This was further confirmed by the absorbance of DNA. Compared to the pure DNA, bulky and aggregated DNA collapsed structures were formed when the sodium and magnesium cations were added to the reaction solution. In addition, it was verified that the condensed DNA structures failed to revert back to the chain structure by neutralizing acidic solutions with alkali, but the compacted DNA spheres became loose. The conductivities of various DNA morphologies were measured. They were morphology-dependent. This study provides guidance for the behavior of DNA in the acidic solutions and further promotes the application of DNA in DNA-based nano-optoelectronic devices.</p>","PeriodicalId":18684,"journal":{"name":"Microscopy Research and Technique","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic Regulation of DNA Morphology by Metal Cations and Low pH.\",\"authors\":\"Xia Wang, Ying Wang, Mingyan Gao, Fengyan Hou, Junxi Wang, Jingyu Wang, Ye Li, Zuobin Wang\",\"doi\":\"10.1002/jemt.24737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As a flexible biomolecule, the spatial structure of DNA is variable. The effects of concentration, metal cations, and low pH on DNA morphology were studied. For the high concentration of DNA, the cross-linked branch-like or network structures were formed. For the low concentration of DNA, isolated, random and freely loose linear DNA chains were presented. These phenomena were related to the intermolecular interactions. Branch-like DNA structures were reformed with the addition of metal cations to the low concentration of DNA at pH 7-4, suggesting the negative charges of DNA were neutralized, thus transforming the spatial structure of DNA into a low charge density morphology and presenting the hypochromic effect. Compared to the monovalent alkaline metal cations, more negative charges of DNA were screened by the alkaline-earth metal cations. Distinct DNA morphologies were observed for pH 3. The linear and condensed DNA structures were simultaneously observed, which was met regardless of the solution with or without the addition of metal cations. This was further confirmed by the absorbance of DNA. Compared to the pure DNA, bulky and aggregated DNA collapsed structures were formed when the sodium and magnesium cations were added to the reaction solution. In addition, it was verified that the condensed DNA structures failed to revert back to the chain structure by neutralizing acidic solutions with alkali, but the compacted DNA spheres became loose. The conductivities of various DNA morphologies were measured. They were morphology-dependent. This study provides guidance for the behavior of DNA in the acidic solutions and further promotes the application of DNA in DNA-based nano-optoelectronic devices.</p>\",\"PeriodicalId\":18684,\"journal\":{\"name\":\"Microscopy Research and Technique\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microscopy Research and Technique\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/jemt.24737\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy Research and Technique","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/jemt.24737","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

作为一种灵活的生物大分子,DNA 的空间结构是多变的。研究了浓度、金属阳离子和低 pH 对 DNA 形态的影响。高浓度 DNA 会形成交联的枝状或网状结构。而低浓度 DNA 则呈现出孤立、随机和自由松散的线性 DNA 链。这些现象与分子间的相互作用有关。在 pH 值为 7-4 的低浓度 DNA 中加入金属阳离子后,枝状 DNA 结构发生重塑,这表明 DNA 的负电荷被中和,从而使 DNA 的空间结构转变为低电荷密度形态,并呈现出低色度效应。与单价碱金属阳离子相比,碱土金属阳离子能筛选出更多的 DNA 负电荷。在 pH 值为 3 的溶液中观察到了不同的 DNA 形态,同时观察到了线型和缩合型 DNA 结构,这与添加或不添加金属阳离子的溶液是一致的。DNA 的吸光度进一步证实了这一点。与纯 DNA 相比,在反应溶液中加入钠和镁阳离子时,会形成膨大和聚集的 DNA 折叠结构。此外,还验证了用碱中和酸性溶液时,凝结的 DNA 结构无法恢复到链状结构,但压缩的 DNA 球体变得松散。测量了各种 DNA 形态的电导率。它们与形态有关。这项研究为 DNA 在酸性溶液中的行为提供了指导,并进一步推动了 DNA 在基于 DNA 的纳米光电器件中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synergistic Regulation of DNA Morphology by Metal Cations and Low pH.

As a flexible biomolecule, the spatial structure of DNA is variable. The effects of concentration, metal cations, and low pH on DNA morphology were studied. For the high concentration of DNA, the cross-linked branch-like or network structures were formed. For the low concentration of DNA, isolated, random and freely loose linear DNA chains were presented. These phenomena were related to the intermolecular interactions. Branch-like DNA structures were reformed with the addition of metal cations to the low concentration of DNA at pH 7-4, suggesting the negative charges of DNA were neutralized, thus transforming the spatial structure of DNA into a low charge density morphology and presenting the hypochromic effect. Compared to the monovalent alkaline metal cations, more negative charges of DNA were screened by the alkaline-earth metal cations. Distinct DNA morphologies were observed for pH 3. The linear and condensed DNA structures were simultaneously observed, which was met regardless of the solution with or without the addition of metal cations. This was further confirmed by the absorbance of DNA. Compared to the pure DNA, bulky and aggregated DNA collapsed structures were formed when the sodium and magnesium cations were added to the reaction solution. In addition, it was verified that the condensed DNA structures failed to revert back to the chain structure by neutralizing acidic solutions with alkali, but the compacted DNA spheres became loose. The conductivities of various DNA morphologies were measured. They were morphology-dependent. This study provides guidance for the behavior of DNA in the acidic solutions and further promotes the application of DNA in DNA-based nano-optoelectronic devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microscopy Research and Technique
Microscopy Research and Technique 医学-解剖学与形态学
CiteScore
5.30
自引率
20.00%
发文量
233
审稿时长
4.7 months
期刊介绍: Microscopy Research and Technique (MRT) publishes articles on all aspects of advanced microscopy original architecture and methodologies with applications in the biological, clinical, chemical, and materials sciences. Original basic and applied research as well as technical papers dealing with the various subsets of microscopy are encouraged. MRT is the right form for those developing new microscopy methods or using the microscope to answer key questions in basic and applied research.
期刊最新文献
Dealing with Missing Angular Sections in NanoCT Reconstructions of Low Contrast Polymeric Samples Employing a Mechanical In Situ Loading Stage. Detection and Characterization of Multidimensional Information of Adipocyte Model Based on AFM-Raman. Effect of Dentin Bio-Modifiers Grape Seed Extract, Hesperidin on Shear Bond Strength and Microleakage: A Scanning Electron Microscopic Assessment. Lead Nitrate (Pb(NO3)2) Toxicity Effects on DNA Structure and Histopathological Damage in Gills of Common Carp (Cyprinus carpio). Early-Stage Melanoma Cancer Diagnosis Framework for Imbalanced Data From Dermoscopic Images.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1