{"title":"辐射诱发肺纤维化的个性化硅学模型。","authors":"Eleftherios Ioannou, Myrianthi Hadjicharalambous, Anastasia Malai, Elisavet Papageorgiou, Antri Peraticou, Nicos Katodritis, Dimitrios Vomvas, Vasileios Vavourakis","doi":"10.1098/rsif.2024.0525","DOIUrl":null,"url":null,"abstract":"<p><p>Radiation-induced pulmonary fibrosis (RIPF) is a severe late-stage complication of radiotherapy (RT) to the chest area, typically used in lung cancer treatment. This condition is characterized by the gradual and irreversible replacement of healthy lung tissue with fibrous scar tissue, leading to decreased lung function, reduced oxygen exchange and critical respiratory deficiencies. Currently, predicting and managing lung fibrosis post-RT remains challenging, with limited preventive and treatment options. Accurate prediction of fibrosis onset and progression is therefore clinically crucial. We present a personalized <i>in silico</i> model for pulmonary fibrosis that encompasses tumour regression, fibrosis development and lung tissue remodelling post-radiation. Our continuum-based model was developed using data from 12 RT-treated lung cancer patients and integrates computed tomography (CT) and dosimetry data to simulate the spatio-temporal evolution of fibrosis. We demonstrate the ability of the <i>in silico</i> model to capture the extent of fibrosis in the entire cohort with a less than 1% deviation from clinical observations, in addition to providing quantitative metrics of spatial similarity. These findings underscore the potential of the model to improve treatment planning and risk assessment, paving the way for more personalized and effective management of RIPF.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"21 220","pages":"20240525"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557242/pdf/","citationCount":"0","resultStr":"{\"title\":\"Personalized <i>in silico</i> model for radiation-induced pulmonary fibrosis.\",\"authors\":\"Eleftherios Ioannou, Myrianthi Hadjicharalambous, Anastasia Malai, Elisavet Papageorgiou, Antri Peraticou, Nicos Katodritis, Dimitrios Vomvas, Vasileios Vavourakis\",\"doi\":\"10.1098/rsif.2024.0525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Radiation-induced pulmonary fibrosis (RIPF) is a severe late-stage complication of radiotherapy (RT) to the chest area, typically used in lung cancer treatment. This condition is characterized by the gradual and irreversible replacement of healthy lung tissue with fibrous scar tissue, leading to decreased lung function, reduced oxygen exchange and critical respiratory deficiencies. Currently, predicting and managing lung fibrosis post-RT remains challenging, with limited preventive and treatment options. Accurate prediction of fibrosis onset and progression is therefore clinically crucial. We present a personalized <i>in silico</i> model for pulmonary fibrosis that encompasses tumour regression, fibrosis development and lung tissue remodelling post-radiation. Our continuum-based model was developed using data from 12 RT-treated lung cancer patients and integrates computed tomography (CT) and dosimetry data to simulate the spatio-temporal evolution of fibrosis. We demonstrate the ability of the <i>in silico</i> model to capture the extent of fibrosis in the entire cohort with a less than 1% deviation from clinical observations, in addition to providing quantitative metrics of spatial similarity. These findings underscore the potential of the model to improve treatment planning and risk assessment, paving the way for more personalized and effective management of RIPF.</p>\",\"PeriodicalId\":17488,\"journal\":{\"name\":\"Journal of The Royal Society Interface\",\"volume\":\"21 220\",\"pages\":\"20240525\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557242/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Royal Society Interface\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsif.2024.0525\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0525","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Personalized in silico model for radiation-induced pulmonary fibrosis.
Radiation-induced pulmonary fibrosis (RIPF) is a severe late-stage complication of radiotherapy (RT) to the chest area, typically used in lung cancer treatment. This condition is characterized by the gradual and irreversible replacement of healthy lung tissue with fibrous scar tissue, leading to decreased lung function, reduced oxygen exchange and critical respiratory deficiencies. Currently, predicting and managing lung fibrosis post-RT remains challenging, with limited preventive and treatment options. Accurate prediction of fibrosis onset and progression is therefore clinically crucial. We present a personalized in silico model for pulmonary fibrosis that encompasses tumour regression, fibrosis development and lung tissue remodelling post-radiation. Our continuum-based model was developed using data from 12 RT-treated lung cancer patients and integrates computed tomography (CT) and dosimetry data to simulate the spatio-temporal evolution of fibrosis. We demonstrate the ability of the in silico model to capture the extent of fibrosis in the entire cohort with a less than 1% deviation from clinical observations, in addition to providing quantitative metrics of spatial similarity. These findings underscore the potential of the model to improve treatment planning and risk assessment, paving the way for more personalized and effective management of RIPF.
期刊介绍:
J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.