Xiaojia Huang, Jie Luo, Xiangrong Wang, Xianwei Cheng, Xueni Hou
{"title":"嘌呤-Fe2+复合天然染料的制备及其在丝织物上的印花性能。","authors":"Xiaojia Huang, Jie Luo, Xiangrong Wang, Xianwei Cheng, Xueni Hou","doi":"10.3390/ma17215367","DOIUrl":null,"url":null,"abstract":"<p><p>In order to shorten the process of textile printing with natural dyes, develop new methods, and improve the color fastness and quality of printed products, this study presents a novel approach by synthesizing a natural complex dye through the interaction between purpurin and Fe<sup>2+</sup> ions, resulting in a compound named purpurin-Fe<sup>2+</sup> (P-Fe). This synthesized complex dye was meticulously characterized using state-of-the-art analytical techniques, including Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible (UV-Vis) spectrophotometry, and scanning electron microscopy energy-dispersive spectroscopy (EDS). The characterization confirmed the successful complexation of purpurin with Fe<sup>2+</sup> ions. The prepared complex dye P-Fe was used for the printing of silk fabric. The optimized printing process involves steaming at a temperature of 100 °C for a duration of 20 min. In comparison to fabrics printed using direct dyes, the <i>K</i>/<i>S</i> values of the fabric printed with the P-Fe complex showed a significant enhancement, with all color fastness ratings achieving grade four. Furthermore, the proportion of metal elements on the white background of the printed fabric was found to be less than 0.180%, and the level of whiteness was above 50. The application of the P-Fe dye in silk fabric printing not only streamlines the printing process but also enhances the depth and speed of the printed color, effectively addressing the issue of color transfer onto a white background, which is commonly associated with natural dyes.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 21","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547352/pdf/","citationCount":"0","resultStr":"{\"title\":\"Preparation of Purpurin-Fe<sup>2+</sup> Complex Natural Dye and Its Printing Performance on Silk Fabrics.\",\"authors\":\"Xiaojia Huang, Jie Luo, Xiangrong Wang, Xianwei Cheng, Xueni Hou\",\"doi\":\"10.3390/ma17215367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In order to shorten the process of textile printing with natural dyes, develop new methods, and improve the color fastness and quality of printed products, this study presents a novel approach by synthesizing a natural complex dye through the interaction between purpurin and Fe<sup>2+</sup> ions, resulting in a compound named purpurin-Fe<sup>2+</sup> (P-Fe). This synthesized complex dye was meticulously characterized using state-of-the-art analytical techniques, including Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible (UV-Vis) spectrophotometry, and scanning electron microscopy energy-dispersive spectroscopy (EDS). The characterization confirmed the successful complexation of purpurin with Fe<sup>2+</sup> ions. The prepared complex dye P-Fe was used for the printing of silk fabric. The optimized printing process involves steaming at a temperature of 100 °C for a duration of 20 min. In comparison to fabrics printed using direct dyes, the <i>K</i>/<i>S</i> values of the fabric printed with the P-Fe complex showed a significant enhancement, with all color fastness ratings achieving grade four. Furthermore, the proportion of metal elements on the white background of the printed fabric was found to be less than 0.180%, and the level of whiteness was above 50. The application of the P-Fe dye in silk fabric printing not only streamlines the printing process but also enhances the depth and speed of the printed color, effectively addressing the issue of color transfer onto a white background, which is commonly associated with natural dyes.</p>\",\"PeriodicalId\":18281,\"journal\":{\"name\":\"Materials\",\"volume\":\"17 21\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547352/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/ma17215367\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma17215367","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Preparation of Purpurin-Fe2+ Complex Natural Dye and Its Printing Performance on Silk Fabrics.
In order to shorten the process of textile printing with natural dyes, develop new methods, and improve the color fastness and quality of printed products, this study presents a novel approach by synthesizing a natural complex dye through the interaction between purpurin and Fe2+ ions, resulting in a compound named purpurin-Fe2+ (P-Fe). This synthesized complex dye was meticulously characterized using state-of-the-art analytical techniques, including Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible (UV-Vis) spectrophotometry, and scanning electron microscopy energy-dispersive spectroscopy (EDS). The characterization confirmed the successful complexation of purpurin with Fe2+ ions. The prepared complex dye P-Fe was used for the printing of silk fabric. The optimized printing process involves steaming at a temperature of 100 °C for a duration of 20 min. In comparison to fabrics printed using direct dyes, the K/S values of the fabric printed with the P-Fe complex showed a significant enhancement, with all color fastness ratings achieving grade four. Furthermore, the proportion of metal elements on the white background of the printed fabric was found to be less than 0.180%, and the level of whiteness was above 50. The application of the P-Fe dye in silk fabric printing not only streamlines the printing process but also enhances the depth and speed of the printed color, effectively addressing the issue of color transfer onto a white background, which is commonly associated with natural dyes.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.