通过整合粒子群优化-极梯度提升和物理模型预测 2024-T3 Al 合金的疲劳寿命

IF 3.1 3区 材料科学 Q3 CHEMISTRY, PHYSICAL Materials Pub Date : 2024-10-31 DOI:10.3390/ma17215332
Zhaoji Li, Haitao Yue, Ce Zhang, Weibing Dai, Chenguang Guo, Qiang Li, Jianzhuo Zhang
{"title":"通过整合粒子群优化-极梯度提升和物理模型预测 2024-T3 Al 合金的疲劳寿命","authors":"Zhaoji Li, Haitao Yue, Ce Zhang, Weibing Dai, Chenguang Guo, Qiang Li, Jianzhuo Zhang","doi":"10.3390/ma17215332","DOIUrl":null,"url":null,"abstract":"<p><p>The multi-parameter characteristics of the physical model pose a challenge to the fatigue life prediction of 2024-T3 aluminum (Al) alloy. In response to this issue, a parameter-solving method that integrates particle swarm optimization (PSO) with extreme gradient boosting (XGBoost) is proposed in this study. The fatigue performance and failure mechanism of the 2024-T3 Al alloy are analyzed. Furthermore, the fatigue life prediction physical model of the 2024-T3 Al alloy is established by using the energy method of fracture mechanics. The physical model incorporates critical physical parameters. Meanwhile, the PSO algorithm optimizes the hyperparameters of the XGBoost model based on fatigue data of the 2024-T3 Al alloy. Eventually, the optimized XGBoost model is used to solve the parameters of the physical model. Furthermore, the analytical equation of the fatigue life prediction model is obtained. This paper provides a new method for solving the parameters of the fatigue life prediction model, which reduces the error and cost of obtaining the model parameters in the experiment and shortens the time required.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 21","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547450/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fatigue Life Prediction of 2024-T3 Al Alloy by Integrating Particle Swarm Optimization-Extreme Gradient Boosting and Physical Model.\",\"authors\":\"Zhaoji Li, Haitao Yue, Ce Zhang, Weibing Dai, Chenguang Guo, Qiang Li, Jianzhuo Zhang\",\"doi\":\"10.3390/ma17215332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The multi-parameter characteristics of the physical model pose a challenge to the fatigue life prediction of 2024-T3 aluminum (Al) alloy. In response to this issue, a parameter-solving method that integrates particle swarm optimization (PSO) with extreme gradient boosting (XGBoost) is proposed in this study. The fatigue performance and failure mechanism of the 2024-T3 Al alloy are analyzed. Furthermore, the fatigue life prediction physical model of the 2024-T3 Al alloy is established by using the energy method of fracture mechanics. The physical model incorporates critical physical parameters. Meanwhile, the PSO algorithm optimizes the hyperparameters of the XGBoost model based on fatigue data of the 2024-T3 Al alloy. Eventually, the optimized XGBoost model is used to solve the parameters of the physical model. Furthermore, the analytical equation of the fatigue life prediction model is obtained. This paper provides a new method for solving the parameters of the fatigue life prediction model, which reduces the error and cost of obtaining the model parameters in the experiment and shortens the time required.</p>\",\"PeriodicalId\":18281,\"journal\":{\"name\":\"Materials\",\"volume\":\"17 21\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547450/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/ma17215332\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma17215332","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

物理模型的多参数特性给 2024-T3 铝合金的疲劳寿命预测带来了挑战。针对这一问题,本研究提出了一种将粒子群优化(PSO)与极端梯度提升(XGBoost)相结合的参数求解方法。分析了 2024-T3 Al 合金的疲劳性能和失效机理。此外,还利用断裂力学的能量法建立了 2024-T3 Al 合金的疲劳寿命预测物理模型。该物理模型包含关键的物理参数。同时,PSO 算法根据 2024-T3 Al 合金的疲劳数据优化 XGBoost 模型的超参数。最终,优化后的 XGBoost 模型用于求解物理模型的参数。此外,还得到了疲劳寿命预测模型的解析方程。本文提供了一种新的疲劳寿命预测模型参数求解方法,减少了在实验中获取模型参数的误差和成本,缩短了所需时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fatigue Life Prediction of 2024-T3 Al Alloy by Integrating Particle Swarm Optimization-Extreme Gradient Boosting and Physical Model.

The multi-parameter characteristics of the physical model pose a challenge to the fatigue life prediction of 2024-T3 aluminum (Al) alloy. In response to this issue, a parameter-solving method that integrates particle swarm optimization (PSO) with extreme gradient boosting (XGBoost) is proposed in this study. The fatigue performance and failure mechanism of the 2024-T3 Al alloy are analyzed. Furthermore, the fatigue life prediction physical model of the 2024-T3 Al alloy is established by using the energy method of fracture mechanics. The physical model incorporates critical physical parameters. Meanwhile, the PSO algorithm optimizes the hyperparameters of the XGBoost model based on fatigue data of the 2024-T3 Al alloy. Eventually, the optimized XGBoost model is used to solve the parameters of the physical model. Furthermore, the analytical equation of the fatigue life prediction model is obtained. This paper provides a new method for solving the parameters of the fatigue life prediction model, which reduces the error and cost of obtaining the model parameters in the experiment and shortens the time required.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials
Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
5.80
自引率
14.70%
发文量
7753
审稿时长
1.2 months
期刊介绍: Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.
期刊最新文献
Effective Concrete Failure Area for SC Structures Using Stud and Tie Bar Under Performance Tests. Adsorption of Lufenuron 50-EC Pesticide from Aqueous Solution Using Oil Palm Shell-Derived Activated Carbon. Osteoblast Growth in Quaternized Silicon Carbon Nitride Coatings for Dental Implants. Physical-Mechanical Properties and Mineral Deposition of a Pit-and-Fissure Sealant Containing Niobium-Fluoride Nanoparticles-An In Vitro Study. Review of the Anti-Candida albicans Activity and Physical Properties of Soft Lining Materials Modified with Polyene Antibiotics, Azole Drugs, and Chlorohexidine Salts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1