Eu3+ 掺杂 Y2Mo3O12 的发光测温:强度比和机器学习温度读出的性能比较。

IF 3.1 3区 材料科学 Q3 CHEMISTRY, PHYSICAL Materials Pub Date : 2024-11-01 DOI:10.3390/ma17215354
Tamara Gavrilović, Vesna Đorđević, Jovana Periša, Mina Medić, Zoran Ristić, Aleksandar Ćirić, Željka Antić, Miroslav D Dramićanin
{"title":"Eu3+ 掺杂 Y2Mo3O12 的发光测温:强度比和机器学习温度读出的性能比较。","authors":"Tamara Gavrilović, Vesna Đorđević, Jovana Periša, Mina Medić, Zoran Ristić, Aleksandar Ćirić, Željka Antić, Miroslav D Dramićanin","doi":"10.3390/ma17215354","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate temperature measurement is critical across various scientific and industrial applications, necessitating advancements in thermometry techniques. This study explores luminescence thermometry, specifically utilizing machine learning methodologies to enhance temperature sensitivity and accuracy. We investigate the performance of principal component analysis (PCA) on the Eu<sup>3+</sup>-doped Y<sub>2</sub>Mo<sub>3</sub>O<sub>12</sub> luminescent probe, contrasting it with the traditional luminescence intensity ratio (LIR) method. By employing PCA to analyze the full emission spectra collected at varying temperatures, we achieve an average accuracy (ΔT) of 0.9 K and a resolution (δT) of 1.0 K, significantly outperforming the LIR method, which yielded an average accuracy of 2.3 K and a resolution of 2.9 K. Our findings demonstrate that while the LIR method offers a maximum sensitivity (Sr) of 5‱ K⁻<sup>1</sup> at 472 K, PCA's systematic approach enhances the reliability of temperature measurements, marking a crucial advancement in luminescence thermometry. This innovative approach not only enriches the dataset analysis but also sets a new standard for temperature measurement precision.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 21","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547480/pdf/","citationCount":"0","resultStr":"{\"title\":\"Luminescence Thermometry with Eu<sup>3+</sup>-Doped Y<sub>2</sub>Mo<sub>3</sub>O<sub>12</sub>: Comparison of Performance of Intensity Ratio and Machine Learning Temperature Read-Outs.\",\"authors\":\"Tamara Gavrilović, Vesna Đorđević, Jovana Periša, Mina Medić, Zoran Ristić, Aleksandar Ćirić, Željka Antić, Miroslav D Dramićanin\",\"doi\":\"10.3390/ma17215354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate temperature measurement is critical across various scientific and industrial applications, necessitating advancements in thermometry techniques. This study explores luminescence thermometry, specifically utilizing machine learning methodologies to enhance temperature sensitivity and accuracy. We investigate the performance of principal component analysis (PCA) on the Eu<sup>3+</sup>-doped Y<sub>2</sub>Mo<sub>3</sub>O<sub>12</sub> luminescent probe, contrasting it with the traditional luminescence intensity ratio (LIR) method. By employing PCA to analyze the full emission spectra collected at varying temperatures, we achieve an average accuracy (ΔT) of 0.9 K and a resolution (δT) of 1.0 K, significantly outperforming the LIR method, which yielded an average accuracy of 2.3 K and a resolution of 2.9 K. Our findings demonstrate that while the LIR method offers a maximum sensitivity (Sr) of 5‱ K⁻<sup>1</sup> at 472 K, PCA's systematic approach enhances the reliability of temperature measurements, marking a crucial advancement in luminescence thermometry. This innovative approach not only enriches the dataset analysis but also sets a new standard for temperature measurement precision.</p>\",\"PeriodicalId\":18281,\"journal\":{\"name\":\"Materials\",\"volume\":\"17 21\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547480/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/ma17215354\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma17215354","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在各种科学和工业应用中,精确的温度测量至关重要,这就要求温度测量技术不断进步。本研究探讨了发光测温技术,特别是利用机器学习方法来提高温度灵敏度和准确性。我们研究了主成分分析(PCA)在掺杂 Eu3+ 的 Y2Mo3O12 发光探针上的性能,并将其与传统的发光强度比(LIR)方法进行了对比。通过采用 PCA 分析在不同温度下采集的全发射光谱,我们获得了 0.9 K 的平均精度 (ΔT)和 1.0 K 的分辨率 (ΔT),大大优于 LIR 方法,后者的平均精度为 2.我们的研究结果表明,虽然 LIR 方法在 472 K 时的最大灵敏度 (Sr) 为 5‱ K-1,但 PCA 的系统方法提高了温度测量的可靠性,标志着发光测温技术的重要进步。这种创新方法不仅丰富了数据集分析,还为温度测量精度设定了新标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Luminescence Thermometry with Eu3+-Doped Y2Mo3O12: Comparison of Performance of Intensity Ratio and Machine Learning Temperature Read-Outs.

Accurate temperature measurement is critical across various scientific and industrial applications, necessitating advancements in thermometry techniques. This study explores luminescence thermometry, specifically utilizing machine learning methodologies to enhance temperature sensitivity and accuracy. We investigate the performance of principal component analysis (PCA) on the Eu3+-doped Y2Mo3O12 luminescent probe, contrasting it with the traditional luminescence intensity ratio (LIR) method. By employing PCA to analyze the full emission spectra collected at varying temperatures, we achieve an average accuracy (ΔT) of 0.9 K and a resolution (δT) of 1.0 K, significantly outperforming the LIR method, which yielded an average accuracy of 2.3 K and a resolution of 2.9 K. Our findings demonstrate that while the LIR method offers a maximum sensitivity (Sr) of 5‱ K⁻1 at 472 K, PCA's systematic approach enhances the reliability of temperature measurements, marking a crucial advancement in luminescence thermometry. This innovative approach not only enriches the dataset analysis but also sets a new standard for temperature measurement precision.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials
Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
5.80
自引率
14.70%
发文量
7753
审稿时长
1.2 months
期刊介绍: Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.
期刊最新文献
Effective Concrete Failure Area for SC Structures Using Stud and Tie Bar Under Performance Tests. Adsorption of Lufenuron 50-EC Pesticide from Aqueous Solution Using Oil Palm Shell-Derived Activated Carbon. Osteoblast Growth in Quaternized Silicon Carbon Nitride Coatings for Dental Implants. Physical-Mechanical Properties and Mineral Deposition of a Pit-and-Fissure Sealant Containing Niobium-Fluoride Nanoparticles-An In Vitro Study. Review of the Anti-Candida albicans Activity and Physical Properties of Soft Lining Materials Modified with Polyene Antibiotics, Azole Drugs, and Chlorohexidine Salts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1