Wentao Zhao, Guangxin Yu, Ehsan Elahi, Junmeng Cai, Frank Behrendt, Thomas Schliermann, Fang He
{"title":"利用顺序运行室实现准稳态堆垛烟熏,用于生物质废物的工业处理。","authors":"Wentao Zhao, Guangxin Yu, Ehsan Elahi, Junmeng Cai, Frank Behrendt, Thomas Schliermann, Fang He","doi":"10.1177/0734242X241290766","DOIUrl":null,"url":null,"abstract":"<p><p>Piled smouldering has great potential for treatment and utilization of biomass wastes. However, its unsteady-state nature limits its industrial utilization, as well as treatment of smoke. This article addresses this issue by proposing the sequential operation of numerous smouldering chambers to realize steady- or quasi-steady-state piled smouldering. The superposition characteristics of sequential unsteady-state curves were analysed theoretically, and a code was developed to determine an appropriate number of piled chambers at an allowance oscillation percentage. Smouldering experiments were performed on a single mini chamber (length × width × height: 340 × 140 × 140 mm<sup>3</sup>) containing piled wood pellets mixed with wood powder. The superposition of sequential burning rate curves was demonstrated using the code based on the mass loss data of experiments. Analysis shows that the perfect-steady state is possible given the superposition value of the burning rate curve is a constant in this proposed system. Experiments show that the molar ratio of CO/CO<sub>2</sub> in smoke is almost a constant around 0.5 during densely piled smouldering, showing the great potential for self-sustained burning out the smoke. Based on the experimental results, the calculation results show that the relative oscillation range of burning rate (OSC) decreases from 75% to 3% while increasing the number of chambers from 2 to 7. This work provides a novel technology to enable quasi-steady-state smouldering for industrial utilization.</p>","PeriodicalId":23671,"journal":{"name":"Waste Management & Research","volume":" ","pages":"734242X241290766"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Realization of quasi-steady-state piled smouldering using sequential operation chambers for industrial treatment of biomass wastes.\",\"authors\":\"Wentao Zhao, Guangxin Yu, Ehsan Elahi, Junmeng Cai, Frank Behrendt, Thomas Schliermann, Fang He\",\"doi\":\"10.1177/0734242X241290766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Piled smouldering has great potential for treatment and utilization of biomass wastes. However, its unsteady-state nature limits its industrial utilization, as well as treatment of smoke. This article addresses this issue by proposing the sequential operation of numerous smouldering chambers to realize steady- or quasi-steady-state piled smouldering. The superposition characteristics of sequential unsteady-state curves were analysed theoretically, and a code was developed to determine an appropriate number of piled chambers at an allowance oscillation percentage. Smouldering experiments were performed on a single mini chamber (length × width × height: 340 × 140 × 140 mm<sup>3</sup>) containing piled wood pellets mixed with wood powder. The superposition of sequential burning rate curves was demonstrated using the code based on the mass loss data of experiments. Analysis shows that the perfect-steady state is possible given the superposition value of the burning rate curve is a constant in this proposed system. Experiments show that the molar ratio of CO/CO<sub>2</sub> in smoke is almost a constant around 0.5 during densely piled smouldering, showing the great potential for self-sustained burning out the smoke. Based on the experimental results, the calculation results show that the relative oscillation range of burning rate (OSC) decreases from 75% to 3% while increasing the number of chambers from 2 to 7. This work provides a novel technology to enable quasi-steady-state smouldering for industrial utilization.</p>\",\"PeriodicalId\":23671,\"journal\":{\"name\":\"Waste Management & Research\",\"volume\":\" \",\"pages\":\"734242X241290766\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Waste Management & Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1177/0734242X241290766\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste Management & Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1177/0734242X241290766","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Realization of quasi-steady-state piled smouldering using sequential operation chambers for industrial treatment of biomass wastes.
Piled smouldering has great potential for treatment and utilization of biomass wastes. However, its unsteady-state nature limits its industrial utilization, as well as treatment of smoke. This article addresses this issue by proposing the sequential operation of numerous smouldering chambers to realize steady- or quasi-steady-state piled smouldering. The superposition characteristics of sequential unsteady-state curves were analysed theoretically, and a code was developed to determine an appropriate number of piled chambers at an allowance oscillation percentage. Smouldering experiments were performed on a single mini chamber (length × width × height: 340 × 140 × 140 mm3) containing piled wood pellets mixed with wood powder. The superposition of sequential burning rate curves was demonstrated using the code based on the mass loss data of experiments. Analysis shows that the perfect-steady state is possible given the superposition value of the burning rate curve is a constant in this proposed system. Experiments show that the molar ratio of CO/CO2 in smoke is almost a constant around 0.5 during densely piled smouldering, showing the great potential for self-sustained burning out the smoke. Based on the experimental results, the calculation results show that the relative oscillation range of burning rate (OSC) decreases from 75% to 3% while increasing the number of chambers from 2 to 7. This work provides a novel technology to enable quasi-steady-state smouldering for industrial utilization.
期刊介绍:
Waste Management & Research (WM&R) publishes peer-reviewed articles relating to both the theory and practice of waste management and research. Published on behalf of the International Solid Waste Association (ISWA) topics include: wastes (focus on solids), processes and technologies, management systems and tools, and policy and regulatory frameworks, sustainable waste management designs, operations, policies or practices.