Juan Carlos Del Rey, Guillermo Guerrero-Vacas, Francisco Comino, Oscar Rodríguez-Alabanda
{"title":"用于喷涂金属化的 ZnAl15% 焊丝多级拉丝工艺的设计和优化模型。","authors":"Juan Carlos Del Rey, Guillermo Guerrero-Vacas, Francisco Comino, Oscar Rodríguez-Alabanda","doi":"10.3390/ma17215307","DOIUrl":null,"url":null,"abstract":"<p><p>Metallization, a process for applying anti-corrosion coatings, has advantages over hot-dip galvanizing, such as reduced thermal stress and the ability to work \"in situ\". This process consists of the projection of a protective metal as coating from a wire as application material, and this wire is obtained by multi-stage wiredrawing. For the metallization process, a zinc-aluminum alloy wire obtained by this process is used. This industrial process requires multiple stages/dies of diameter reduction, and determining the optimal sequence is complex. Thus, this work focuses on developing models with the aim of designing and optimizing the wiredrawing process of zinc-aluminum (ZnAl) alloys, specifically ZnAl15%, used for anti-corrosion applications. Both analytical models and numerical models based on the finite element method (FEM) and implemented by computer-aided engineering (CAE) software Deform 2D/3D v.12, enabled the prediction of the drawing stress and drawing force in each drawing stage, producing values consistent with experimental measurements. Key findings include the modeling of the material behavior when ZnAl15% wires were subjected to the tensile test at different speeds, with strain rate sensitivity coefficient <i>m</i> = 0.0128, demonstrating that this type of alloy is especially sensitive to the strain rate. In addition, the optimal friction coefficient (µ) for the drawing process of this material was experimentally identified as µ = 0.28, the ideal drawing die angle was determined to be 2α = 10°, and the alloy's deformability limit has been established by a reduction ratio r ≤ 22.5%, which indicates good plastic deformation capacity. The experimental results confirmed that the development of the proposed models can be feasible to facilitate the design and optimization of industrial processes, improving the efficiency and quality of ZnAl15% alloy wire production.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 21","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547521/pdf/","citationCount":"0","resultStr":"{\"title\":\"Models for the Design and Optimization of the Multi-Stage Wiredrawing Process of ZnAl15% Wires for Spray Metallization.\",\"authors\":\"Juan Carlos Del Rey, Guillermo Guerrero-Vacas, Francisco Comino, Oscar Rodríguez-Alabanda\",\"doi\":\"10.3390/ma17215307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metallization, a process for applying anti-corrosion coatings, has advantages over hot-dip galvanizing, such as reduced thermal stress and the ability to work \\\"in situ\\\". This process consists of the projection of a protective metal as coating from a wire as application material, and this wire is obtained by multi-stage wiredrawing. For the metallization process, a zinc-aluminum alloy wire obtained by this process is used. This industrial process requires multiple stages/dies of diameter reduction, and determining the optimal sequence is complex. Thus, this work focuses on developing models with the aim of designing and optimizing the wiredrawing process of zinc-aluminum (ZnAl) alloys, specifically ZnAl15%, used for anti-corrosion applications. Both analytical models and numerical models based on the finite element method (FEM) and implemented by computer-aided engineering (CAE) software Deform 2D/3D v.12, enabled the prediction of the drawing stress and drawing force in each drawing stage, producing values consistent with experimental measurements. Key findings include the modeling of the material behavior when ZnAl15% wires were subjected to the tensile test at different speeds, with strain rate sensitivity coefficient <i>m</i> = 0.0128, demonstrating that this type of alloy is especially sensitive to the strain rate. In addition, the optimal friction coefficient (µ) for the drawing process of this material was experimentally identified as µ = 0.28, the ideal drawing die angle was determined to be 2α = 10°, and the alloy's deformability limit has been established by a reduction ratio r ≤ 22.5%, which indicates good plastic deformation capacity. The experimental results confirmed that the development of the proposed models can be feasible to facilitate the design and optimization of industrial processes, improving the efficiency and quality of ZnAl15% alloy wire production.</p>\",\"PeriodicalId\":18281,\"journal\":{\"name\":\"Materials\",\"volume\":\"17 21\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547521/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/ma17215307\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma17215307","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Models for the Design and Optimization of the Multi-Stage Wiredrawing Process of ZnAl15% Wires for Spray Metallization.
Metallization, a process for applying anti-corrosion coatings, has advantages over hot-dip galvanizing, such as reduced thermal stress and the ability to work "in situ". This process consists of the projection of a protective metal as coating from a wire as application material, and this wire is obtained by multi-stage wiredrawing. For the metallization process, a zinc-aluminum alloy wire obtained by this process is used. This industrial process requires multiple stages/dies of diameter reduction, and determining the optimal sequence is complex. Thus, this work focuses on developing models with the aim of designing and optimizing the wiredrawing process of zinc-aluminum (ZnAl) alloys, specifically ZnAl15%, used for anti-corrosion applications. Both analytical models and numerical models based on the finite element method (FEM) and implemented by computer-aided engineering (CAE) software Deform 2D/3D v.12, enabled the prediction of the drawing stress and drawing force in each drawing stage, producing values consistent with experimental measurements. Key findings include the modeling of the material behavior when ZnAl15% wires were subjected to the tensile test at different speeds, with strain rate sensitivity coefficient m = 0.0128, demonstrating that this type of alloy is especially sensitive to the strain rate. In addition, the optimal friction coefficient (µ) for the drawing process of this material was experimentally identified as µ = 0.28, the ideal drawing die angle was determined to be 2α = 10°, and the alloy's deformability limit has been established by a reduction ratio r ≤ 22.5%, which indicates good plastic deformation capacity. The experimental results confirmed that the development of the proposed models can be feasible to facilitate the design and optimization of industrial processes, improving the efficiency and quality of ZnAl15% alloy wire production.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.