Naghmeh Gholamalizadeh, Sajjad Mirfaeghi, Farhad Sharif, Saeedeh Mazinani, Ali Mohammad Bazargan
{"title":"揭开二维碳基导电胶的神秘面纱:结构与性能对比分析","authors":"Naghmeh Gholamalizadeh, Sajjad Mirfaeghi, Farhad Sharif, Saeedeh Mazinani, Ali Mohammad Bazargan","doi":"10.1007/s10854-024-13775-y","DOIUrl":null,"url":null,"abstract":"<div><p>The rise in popularity of carbon-based adhesives is revolutionizing the industry, offering eco-friendly alternatives that can be recycled while protecting the environment from the harmful effects of solder metal. In this ground breaking study, we delve into the impact of different carbon-based conductive fillers on the overall performance of the adhesive. From reduced graphene oxide (rGO) to thermally and chemically expanded graphite (EG), we explore these fillers’ intricate 3D network structure and how they enhance both the final product’s electrical conductivity and mechanical strength. According to the findings of this research, the structure of 3D and interwoven EG plays the prominent role in electrical conductivity. Maintaining the 3D and stable structure after making the composite is due to the structure of EG, which prevents the graphene sheets from falling on top of each other, preventing the interaction of free electrons with vertical sheets. On the other hand, a similar structure was obtained using two separate methods of thermal and chemical expansion, which is optimal in terms of electrical conductivity. Our findings reveal that an adhesive containing 17.5 wt% of EG achieved a volume resistivity of 2.5 Ω cm, showcasing the remarkable conductivity of these materials. The unique 3D network structure improves electrical performance and aids in the curing process by reducing curing enthalpy to 147.19 J g<sup>−1</sup>, resulting in superior mechanical properties and adhesion. Furthermore, by studying the effects of functional groups and surface characteristics of chemically expanded graphite (CEG), we discovered that sharp edges and wrinkled sheets significantly enhance the adhesive’s tensile strength, surpassing 10.24 ± 1.2 MPa. The Young’s modulus of 96.24 ± 6 MPa represents moderate stiffness while also allowing for flexibility. The results show carbon-based adhesives’ potential and pave the way for a more sustainable product.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":"35 32","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the power of 2D carbon-based electrically conductive adhesive: a comparative analysis on structure and performance\",\"authors\":\"Naghmeh Gholamalizadeh, Sajjad Mirfaeghi, Farhad Sharif, Saeedeh Mazinani, Ali Mohammad Bazargan\",\"doi\":\"10.1007/s10854-024-13775-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The rise in popularity of carbon-based adhesives is revolutionizing the industry, offering eco-friendly alternatives that can be recycled while protecting the environment from the harmful effects of solder metal. In this ground breaking study, we delve into the impact of different carbon-based conductive fillers on the overall performance of the adhesive. From reduced graphene oxide (rGO) to thermally and chemically expanded graphite (EG), we explore these fillers’ intricate 3D network structure and how they enhance both the final product’s electrical conductivity and mechanical strength. According to the findings of this research, the structure of 3D and interwoven EG plays the prominent role in electrical conductivity. Maintaining the 3D and stable structure after making the composite is due to the structure of EG, which prevents the graphene sheets from falling on top of each other, preventing the interaction of free electrons with vertical sheets. On the other hand, a similar structure was obtained using two separate methods of thermal and chemical expansion, which is optimal in terms of electrical conductivity. Our findings reveal that an adhesive containing 17.5 wt% of EG achieved a volume resistivity of 2.5 Ω cm, showcasing the remarkable conductivity of these materials. The unique 3D network structure improves electrical performance and aids in the curing process by reducing curing enthalpy to 147.19 J g<sup>−1</sup>, resulting in superior mechanical properties and adhesion. Furthermore, by studying the effects of functional groups and surface characteristics of chemically expanded graphite (CEG), we discovered that sharp edges and wrinkled sheets significantly enhance the adhesive’s tensile strength, surpassing 10.24 ± 1.2 MPa. The Young’s modulus of 96.24 ± 6 MPa represents moderate stiffness while also allowing for flexibility. The results show carbon-based adhesives’ potential and pave the way for a more sustainable product.</p></div>\",\"PeriodicalId\":646,\"journal\":{\"name\":\"Journal of Materials Science: Materials in Electronics\",\"volume\":\"35 32\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science: Materials in Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10854-024-13775-y\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-024-13775-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Unveiling the power of 2D carbon-based electrically conductive adhesive: a comparative analysis on structure and performance
The rise in popularity of carbon-based adhesives is revolutionizing the industry, offering eco-friendly alternatives that can be recycled while protecting the environment from the harmful effects of solder metal. In this ground breaking study, we delve into the impact of different carbon-based conductive fillers on the overall performance of the adhesive. From reduced graphene oxide (rGO) to thermally and chemically expanded graphite (EG), we explore these fillers’ intricate 3D network structure and how they enhance both the final product’s electrical conductivity and mechanical strength. According to the findings of this research, the structure of 3D and interwoven EG plays the prominent role in electrical conductivity. Maintaining the 3D and stable structure after making the composite is due to the structure of EG, which prevents the graphene sheets from falling on top of each other, preventing the interaction of free electrons with vertical sheets. On the other hand, a similar structure was obtained using two separate methods of thermal and chemical expansion, which is optimal in terms of electrical conductivity. Our findings reveal that an adhesive containing 17.5 wt% of EG achieved a volume resistivity of 2.5 Ω cm, showcasing the remarkable conductivity of these materials. The unique 3D network structure improves electrical performance and aids in the curing process by reducing curing enthalpy to 147.19 J g−1, resulting in superior mechanical properties and adhesion. Furthermore, by studying the effects of functional groups and surface characteristics of chemically expanded graphite (CEG), we discovered that sharp edges and wrinkled sheets significantly enhance the adhesive’s tensile strength, surpassing 10.24 ± 1.2 MPa. The Young’s modulus of 96.24 ± 6 MPa represents moderate stiffness while also allowing for flexibility. The results show carbon-based adhesives’ potential and pave the way for a more sustainable product.
期刊介绍:
The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.