Yueming Li, Jiajun Huang, Binxuan Jiang, Yi Sun, Kai Li, Zongyang Shen, Zhumei Wang, Huanhuan Guo
{"title":"0.84MgNb2-x(Ti1/2W1/2)xO6-0.16CaTiO3 陶瓷的微波介电性能研究","authors":"Yueming Li, Jiajun Huang, Binxuan Jiang, Yi Sun, Kai Li, Zongyang Shen, Zhumei Wang, Huanhuan Guo","doi":"10.1007/s10854-024-13813-9","DOIUrl":null,"url":null,"abstract":"<div><p>In order to meet the demand of high-quality microwave dielectric ceramics for the development of wireless communication, 0.84MgNb<sub>2-<i>x</i></sub>(Ti<sub>1/2</sub>W<sub>1/2</sub>)<sub><i>x</i></sub>O<sub>6</sub>-0.16CaTiO<sub>3</sub>(<i>x</i> = 0, 0.03, 0.05, 0.07, 0.09, 0.11) microwave dielectric ceramics were prepared by solid-phase method. The effects of phase structure, sintering properties, microstructure, and microwave dielectric properties of 0.84MgNb<sub>2</sub>O<sub>6</sub>-0.16CaTiO<sub>3</sub> ceramics in which the Nb<sup>5+</sup> ionic substituted with different contents of (Ti<sub>1/2</sub>W<sub>1/2</sub>)<sup>5+</sup> were studied. The results indicate that the partial Nb<sup>5+</sup> in the 0.84MgNb<sub>2-<i>x</i></sub>(Ti<sub>1/2</sub>W<sub>1/2</sub>)<sub><i>x</i></sub>O<sub>6</sub>-0.16CaTiO<sub>3</sub> nominal composition are replaced by the complex cations (Ti<sub>1/2</sub>W<sub>1/2</sub>)<sup>5+</sup> in the crystal structure, and no new phase is produced. With the gradual increase of (Ti<sub>1/2</sub>W<sub>1/2</sub>)<sup>5+</sup> addition, the bulk density of 0.84MgNb<sub>2-<i>x</i></sub>(Ti<sub>1/2</sub>W<sub>1/2</sub>)<sub><i>x</i></sub>O<sub>6</sub>-0.16CaTiO<sub>3</sub> ceramics increased, the sintering temperature did not significantly change, the ceramic cell volume decreased, and the material polarizability and filling rate decreased, resulting in a decrease in the ceramics’ dielectric constant ε<sub>r</sub>, the quality factor <i>Q</i> × <i>f</i> increases, and the frequency temperature coefficient τ<sub><i>f</i></sub> shifts to a positive value. The 0.84MgNb<sub>1.95</sub>(Ti<sub>1/2</sub>W<sub>1/2</sub>)<sub>0.05</sub>O<sub>6</sub>-0.16CaTiO<sub>3</sub> ceramic with <i>x</i> = 0.05 composition sintered at 1250 °C for 4 h holding time has the best microwave dielectric properties: <i>ε</i><sub>r</sub> = 21.52, <i>Q</i> × <i>f</i> = 96983 GHz, and τ<sub><i>f</i></sub> = − 3.8 × 10<sup>–6</sup>/ °C.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":"35 32","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the microwave dielectric properties of 0.84MgNb2-x(Ti1/2W1/2)xO6-0.16CaTiO3 ceramic\",\"authors\":\"Yueming Li, Jiajun Huang, Binxuan Jiang, Yi Sun, Kai Li, Zongyang Shen, Zhumei Wang, Huanhuan Guo\",\"doi\":\"10.1007/s10854-024-13813-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In order to meet the demand of high-quality microwave dielectric ceramics for the development of wireless communication, 0.84MgNb<sub>2-<i>x</i></sub>(Ti<sub>1/2</sub>W<sub>1/2</sub>)<sub><i>x</i></sub>O<sub>6</sub>-0.16CaTiO<sub>3</sub>(<i>x</i> = 0, 0.03, 0.05, 0.07, 0.09, 0.11) microwave dielectric ceramics were prepared by solid-phase method. The effects of phase structure, sintering properties, microstructure, and microwave dielectric properties of 0.84MgNb<sub>2</sub>O<sub>6</sub>-0.16CaTiO<sub>3</sub> ceramics in which the Nb<sup>5+</sup> ionic substituted with different contents of (Ti<sub>1/2</sub>W<sub>1/2</sub>)<sup>5+</sup> were studied. The results indicate that the partial Nb<sup>5+</sup> in the 0.84MgNb<sub>2-<i>x</i></sub>(Ti<sub>1/2</sub>W<sub>1/2</sub>)<sub><i>x</i></sub>O<sub>6</sub>-0.16CaTiO<sub>3</sub> nominal composition are replaced by the complex cations (Ti<sub>1/2</sub>W<sub>1/2</sub>)<sup>5+</sup> in the crystal structure, and no new phase is produced. With the gradual increase of (Ti<sub>1/2</sub>W<sub>1/2</sub>)<sup>5+</sup> addition, the bulk density of 0.84MgNb<sub>2-<i>x</i></sub>(Ti<sub>1/2</sub>W<sub>1/2</sub>)<sub><i>x</i></sub>O<sub>6</sub>-0.16CaTiO<sub>3</sub> ceramics increased, the sintering temperature did not significantly change, the ceramic cell volume decreased, and the material polarizability and filling rate decreased, resulting in a decrease in the ceramics’ dielectric constant ε<sub>r</sub>, the quality factor <i>Q</i> × <i>f</i> increases, and the frequency temperature coefficient τ<sub><i>f</i></sub> shifts to a positive value. The 0.84MgNb<sub>1.95</sub>(Ti<sub>1/2</sub>W<sub>1/2</sub>)<sub>0.05</sub>O<sub>6</sub>-0.16CaTiO<sub>3</sub> ceramic with <i>x</i> = 0.05 composition sintered at 1250 °C for 4 h holding time has the best microwave dielectric properties: <i>ε</i><sub>r</sub> = 21.52, <i>Q</i> × <i>f</i> = 96983 GHz, and τ<sub><i>f</i></sub> = − 3.8 × 10<sup>–6</sup>/ °C.</p></div>\",\"PeriodicalId\":646,\"journal\":{\"name\":\"Journal of Materials Science: Materials in Electronics\",\"volume\":\"35 32\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science: Materials in Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10854-024-13813-9\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-024-13813-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Study on the microwave dielectric properties of 0.84MgNb2-x(Ti1/2W1/2)xO6-0.16CaTiO3 ceramic
In order to meet the demand of high-quality microwave dielectric ceramics for the development of wireless communication, 0.84MgNb2-x(Ti1/2W1/2)xO6-0.16CaTiO3(x = 0, 0.03, 0.05, 0.07, 0.09, 0.11) microwave dielectric ceramics were prepared by solid-phase method. The effects of phase structure, sintering properties, microstructure, and microwave dielectric properties of 0.84MgNb2O6-0.16CaTiO3 ceramics in which the Nb5+ ionic substituted with different contents of (Ti1/2W1/2)5+ were studied. The results indicate that the partial Nb5+ in the 0.84MgNb2-x(Ti1/2W1/2)xO6-0.16CaTiO3 nominal composition are replaced by the complex cations (Ti1/2W1/2)5+ in the crystal structure, and no new phase is produced. With the gradual increase of (Ti1/2W1/2)5+ addition, the bulk density of 0.84MgNb2-x(Ti1/2W1/2)xO6-0.16CaTiO3 ceramics increased, the sintering temperature did not significantly change, the ceramic cell volume decreased, and the material polarizability and filling rate decreased, resulting in a decrease in the ceramics’ dielectric constant εr, the quality factor Q × f increases, and the frequency temperature coefficient τf shifts to a positive value. The 0.84MgNb1.95(Ti1/2W1/2)0.05O6-0.16CaTiO3 ceramic with x = 0.05 composition sintered at 1250 °C for 4 h holding time has the best microwave dielectric properties: εr = 21.52, Q × f = 96983 GHz, and τf = − 3.8 × 10–6/ °C.
期刊介绍:
The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.