Fe3O4@SiO2@[氨基乙二醇][甲酸盐]作为一种新型超顺磁性纳米催化剂和[氨基乙二醇][甲酸盐]作为一种新型离子液体催化剂制备新的二甲基二氢嘧啶并[4,5-b]喹啉酮衍生物。

IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED Molecular Diversity Pub Date : 2024-11-15 DOI:10.1007/s11030-024-11013-5
Fatemeh Bani Asadi, Farhad Shirzaei, Hamid Reza Shaterian
{"title":"Fe3O4@SiO2@[氨基乙二醇][甲酸盐]作为一种新型超顺磁性纳米催化剂和[氨基乙二醇][甲酸盐]作为一种新型离子液体催化剂制备新的二甲基二氢嘧啶并[4,5-b]喹啉酮衍生物。","authors":"Fatemeh Bani Asadi, Farhad Shirzaei, Hamid Reza Shaterian","doi":"10.1007/s11030-024-11013-5","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient synthesis of novel dimethyldihydropyrimido[4,5-b]quinolones via three-component condensation of barbituric acid, arylaldehydes, and 3,4-dimethylaniline catalyzed by Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>@[Aminoglycol][Formate] as a new superparamagnetic nanocatalyst and [Aminoglycol][Formate] as a novel ionic liquid catalyst was described. The new heterogeneous nanocatalyst was characterized by FE-SEM, XRD, FT-IR, TGA-DTG, and VSM techniques. The new ionic liquid was characterized by <sup>13</sup>CNMR, <sup>1</sup>HNMR, and FT-IR techniques. The present work has advantages, such as excellent yields, short reaction times, environmentally friendly protocol, easy separation, and purification of products. The catalysts kept its catalytic properties after even five recoverability and reusability.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>@[Aminoglycol][Formate] as a new superparamagnetic nanocatalyst and [Aminoglycol][Formate] as a novel ionic liquid catalyst for preparation of new dimethyldihydropyrimido[4,5-b]quinolone derivatives.\",\"authors\":\"Fatemeh Bani Asadi, Farhad Shirzaei, Hamid Reza Shaterian\",\"doi\":\"10.1007/s11030-024-11013-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Efficient synthesis of novel dimethyldihydropyrimido[4,5-b]quinolones via three-component condensation of barbituric acid, arylaldehydes, and 3,4-dimethylaniline catalyzed by Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>@[Aminoglycol][Formate] as a new superparamagnetic nanocatalyst and [Aminoglycol][Formate] as a novel ionic liquid catalyst was described. The new heterogeneous nanocatalyst was characterized by FE-SEM, XRD, FT-IR, TGA-DTG, and VSM techniques. The new ionic liquid was characterized by <sup>13</sup>CNMR, <sup>1</sup>HNMR, and FT-IR techniques. The present work has advantages, such as excellent yields, short reaction times, environmentally friendly protocol, easy separation, and purification of products. The catalysts kept its catalytic properties after even five recoverability and reusability.</p>\",\"PeriodicalId\":708,\"journal\":{\"name\":\"Molecular Diversity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Diversity\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11030-024-11013-5\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-11013-5","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

介绍了在新型超顺磁性纳米催化剂 Fe3O4@SiO2@[Aminoglycol][Formate] 和新型离子液体催化剂 [Aminoglycol][Fateate]催化下,通过巴比妥酸、芳基醛和 3,4 二甲基苯胺的三组分缩合,高效合成新型二甲基二氢嘧啶并[4,5-b]喹诺酮类化合物。该新型异质纳米催化剂通过 FE-SEM、XRD、FT-IR、TGA-DTG 和 VSM 技术进行了表征。利用 13CNMR、1HNMR 和傅立叶变换红外技术对新型离子液体进行了表征。本研究成果具有产率高、反应时间短、方案环保、易于分离和纯化产品等优点。催化剂在五次回收和重复使用后仍能保持其催化特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fe3O4@SiO2@[Aminoglycol][Formate] as a new superparamagnetic nanocatalyst and [Aminoglycol][Formate] as a novel ionic liquid catalyst for preparation of new dimethyldihydropyrimido[4,5-b]quinolone derivatives.

Efficient synthesis of novel dimethyldihydropyrimido[4,5-b]quinolones via three-component condensation of barbituric acid, arylaldehydes, and 3,4-dimethylaniline catalyzed by Fe3O4@SiO2@[Aminoglycol][Formate] as a new superparamagnetic nanocatalyst and [Aminoglycol][Formate] as a novel ionic liquid catalyst was described. The new heterogeneous nanocatalyst was characterized by FE-SEM, XRD, FT-IR, TGA-DTG, and VSM techniques. The new ionic liquid was characterized by 13CNMR, 1HNMR, and FT-IR techniques. The present work has advantages, such as excellent yields, short reaction times, environmentally friendly protocol, easy separation, and purification of products. The catalysts kept its catalytic properties after even five recoverability and reusability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Diversity
Molecular Diversity 化学-化学综合
CiteScore
7.30
自引率
7.90%
发文量
219
审稿时长
2.7 months
期刊介绍: Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including: combinatorial chemistry and parallel synthesis; small molecule libraries; microwave synthesis; flow synthesis; fluorous synthesis; diversity oriented synthesis (DOS); nanoreactors; click chemistry; multiplex technologies; fragment- and ligand-based design; structure/function/SAR; computational chemistry and molecular design; chemoinformatics; screening techniques and screening interfaces; analytical and purification methods; robotics, automation and miniaturization; targeted libraries; display libraries; peptides and peptoids; proteins; oligonucleotides; carbohydrates; natural diversity; new methods of library formulation and deconvolution; directed evolution, origin of life and recombination; search techniques, landscapes, random chemistry and more;
期刊最新文献
Integrated computational approaches for identification of potent pyrazole-based glycogen synthase kinase-3β (GSK-3β) inhibitors: 3D-QSAR, virtual screening, docking, MM/GBSA, EC, MD simulation studies. Transcriptome and interactome-based analyses to unravel crucial proteins and pathways involved in Acinetobacter baumannii pathogenesis. Fe3O4@SiO2@[Aminoglycol][Formate] as a new superparamagnetic nanocatalyst and [Aminoglycol][Formate] as a novel ionic liquid catalyst for preparation of new dimethyldihydropyrimido[4,5-b]quinolone derivatives. Identification of potential antigenic proteins and epitopes for the development of a monkeypox virus vaccine: an in silico approach. In silico studies on nicotinamide analogs as competitive inhibitors of nicotinamidase in methicillin-resistant Staphylococcus aureus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1