Fatemeh Mousavi, Joyce Thompson, Justine Lau, Nur Renollet, Mickenzie B Martin, Jake McGue, Oneeb Hassan, Timothy Frankel, Parisa Shooshtari, Christopher L Pin, Filip Bednar
{"title":"胰腺导管腺癌小鼠模型受用于促进 KRASG12D 激活的 cre 驱动程序的影响。","authors":"Fatemeh Mousavi, Joyce Thompson, Justine Lau, Nur Renollet, Mickenzie B Martin, Jake McGue, Oneeb Hassan, Timothy Frankel, Parisa Shooshtari, Christopher L Pin, Filip Bednar","doi":"10.1016/j.jcmgh.2024.101428","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>The fundamental biology of pancreatic ductal adenocarcinoma has been greatly impacted by the characterization of genetically engineered mouse models that allow temporal and spatial activation of oncogenic KRAS (KRAS<sup>G12D</sup>). One of the most commonly used models involves targeted insertion of a cre-recombinase into the Ptf1a gene. However, this approach disrupts the Ptf1a gene, resulting in haploinsufficiency that likely affects sensitivity to oncogenic KRAS (KRAS<sup>G12D</sup>). This study aims to determine if Ptf1a haploinsufficiency affected the acinar cell response to KRAS<sup>G12D</sup> before and after induction of pancreatic injury.</p><p><strong>Methods: </strong>We performed morphological and molecular analysis of three genetically engineered mouse models that express a tamoxifen-inducible cre-recombinase to activate Kras<sup>G12D</sup> in acinar cells of the pancreas. The cre-recombinase was targeted to the acinar-specific transcription factor genes, Ptf1a or Mist1/Bhlha15, or expressed within a BAC-derived Elastase transgene. Histological and RNA-seq analyses were used to delineate differences between the models.</p><p><strong>Results: </strong>Up to two months after tamoxifen induction of KRAS<sup>G12D</sup>, morphological changes were negligible. However, induction of pancreatic injury by cerulein resulted in widespread PanIN lesions in Ptf1a<sup>creERT</sup> pancreata within seven days and maintained for at least five weeks post-injury, which was not seen in the models with two functional Ptf1a alleles. RNA-seq analysis prior to injury induction suggested Ptf1a<sup>creERT</sup> and Mist1<sup>creERT</sup> mice have unique profiles of gene expression that predict a differential response to injury. Multiplex analysis of pancreatic tissue confirmed different inflammatory responses between the models.</p><p><strong>Conclusions: </strong>These findings suggest Ptf1a haploinsufficiency in Ptf1a<sup>creERT</sup> mouse models promotes KRAS<sup>G12D</sup> priming of genes for promotion of PDAC.</p>","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":" ","pages":"101428"},"PeriodicalIF":7.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mouse models for pancreatic ductal adenocarcinoma are affected by the cre-driver used to promote KRASG12D activation.\",\"authors\":\"Fatemeh Mousavi, Joyce Thompson, Justine Lau, Nur Renollet, Mickenzie B Martin, Jake McGue, Oneeb Hassan, Timothy Frankel, Parisa Shooshtari, Christopher L Pin, Filip Bednar\",\"doi\":\"10.1016/j.jcmgh.2024.101428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and aims: </strong>The fundamental biology of pancreatic ductal adenocarcinoma has been greatly impacted by the characterization of genetically engineered mouse models that allow temporal and spatial activation of oncogenic KRAS (KRAS<sup>G12D</sup>). One of the most commonly used models involves targeted insertion of a cre-recombinase into the Ptf1a gene. However, this approach disrupts the Ptf1a gene, resulting in haploinsufficiency that likely affects sensitivity to oncogenic KRAS (KRAS<sup>G12D</sup>). This study aims to determine if Ptf1a haploinsufficiency affected the acinar cell response to KRAS<sup>G12D</sup> before and after induction of pancreatic injury.</p><p><strong>Methods: </strong>We performed morphological and molecular analysis of three genetically engineered mouse models that express a tamoxifen-inducible cre-recombinase to activate Kras<sup>G12D</sup> in acinar cells of the pancreas. The cre-recombinase was targeted to the acinar-specific transcription factor genes, Ptf1a or Mist1/Bhlha15, or expressed within a BAC-derived Elastase transgene. Histological and RNA-seq analyses were used to delineate differences between the models.</p><p><strong>Results: </strong>Up to two months after tamoxifen induction of KRAS<sup>G12D</sup>, morphological changes were negligible. However, induction of pancreatic injury by cerulein resulted in widespread PanIN lesions in Ptf1a<sup>creERT</sup> pancreata within seven days and maintained for at least five weeks post-injury, which was not seen in the models with two functional Ptf1a alleles. RNA-seq analysis prior to injury induction suggested Ptf1a<sup>creERT</sup> and Mist1<sup>creERT</sup> mice have unique profiles of gene expression that predict a differential response to injury. Multiplex analysis of pancreatic tissue confirmed different inflammatory responses between the models.</p><p><strong>Conclusions: </strong>These findings suggest Ptf1a haploinsufficiency in Ptf1a<sup>creERT</sup> mouse models promotes KRAS<sup>G12D</sup> priming of genes for promotion of PDAC.</p>\",\"PeriodicalId\":55974,\"journal\":{\"name\":\"Cellular and Molecular Gastroenterology and Hepatology\",\"volume\":\" \",\"pages\":\"101428\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular and Molecular Gastroenterology and Hepatology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jcmgh.2024.101428\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Gastroenterology and Hepatology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jcmgh.2024.101428","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
Mouse models for pancreatic ductal adenocarcinoma are affected by the cre-driver used to promote KRASG12D activation.
Background and aims: The fundamental biology of pancreatic ductal adenocarcinoma has been greatly impacted by the characterization of genetically engineered mouse models that allow temporal and spatial activation of oncogenic KRAS (KRASG12D). One of the most commonly used models involves targeted insertion of a cre-recombinase into the Ptf1a gene. However, this approach disrupts the Ptf1a gene, resulting in haploinsufficiency that likely affects sensitivity to oncogenic KRAS (KRASG12D). This study aims to determine if Ptf1a haploinsufficiency affected the acinar cell response to KRASG12D before and after induction of pancreatic injury.
Methods: We performed morphological and molecular analysis of three genetically engineered mouse models that express a tamoxifen-inducible cre-recombinase to activate KrasG12D in acinar cells of the pancreas. The cre-recombinase was targeted to the acinar-specific transcription factor genes, Ptf1a or Mist1/Bhlha15, or expressed within a BAC-derived Elastase transgene. Histological and RNA-seq analyses were used to delineate differences between the models.
Results: Up to two months after tamoxifen induction of KRASG12D, morphological changes were negligible. However, induction of pancreatic injury by cerulein resulted in widespread PanIN lesions in Ptf1acreERT pancreata within seven days and maintained for at least five weeks post-injury, which was not seen in the models with two functional Ptf1a alleles. RNA-seq analysis prior to injury induction suggested Ptf1acreERT and Mist1creERT mice have unique profiles of gene expression that predict a differential response to injury. Multiplex analysis of pancreatic tissue confirmed different inflammatory responses between the models.
Conclusions: These findings suggest Ptf1a haploinsufficiency in Ptf1acreERT mouse models promotes KRASG12D priming of genes for promotion of PDAC.
期刊介绍:
"Cell and Molecular Gastroenterology and Hepatology (CMGH)" is a journal dedicated to advancing the understanding of digestive biology through impactful research that spans the spectrum of normal gastrointestinal, hepatic, and pancreatic functions, as well as their pathologies. The journal's mission is to publish high-quality, hypothesis-driven studies that offer mechanistic novelty and are methodologically robust, covering a wide range of themes in gastroenterology, hepatology, and pancreatology.
CMGH reports on the latest scientific advances in cell biology, immunology, physiology, microbiology, genetics, and neurobiology related to gastrointestinal, hepatobiliary, and pancreatic health and disease. The research published in CMGH is designed to address significant questions in the field, utilizing a variety of experimental approaches, including in vitro models, patient-derived tissues or cells, and animal models. This multifaceted approach enables the journal to contribute to both fundamental discoveries and their translation into clinical applications, ultimately aiming to improve patient care and treatment outcomes in digestive health.