{"title":"来自 Trichilia connaroides 的结构多样的柠檬烯类化合物及其抗肿瘤活性","authors":"Ying Yan, Dan Wang, Fang-Jiao Zhou, Yu-Han Zhao, Xu-Jie Qin, Yu Zhang, Xiao Ding, Xiao-Jiang Hao","doi":"10.1002/cjoc.202400923","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Twelve new limonoids (<b>1</b>—<b>12</b>), named trichilitins A—L, were isolated from the leaves and twigs of <i>Trichilia connaroides</i>, together with ten known compounds (<b>13</b>—<b>22</b>). The structures were elucidated by extensive spectroscopic investigations, X-ray diffraction analyses, and ECD calculations. Compound <b>1</b>, which belongs to a unique class of ring B-<i>seco</i> limonoid, has been identified as 6/7/6/5 tetracyclic due to a key Baeyer-Villiger oxidation. Compounds <b>2</b>—<b>7</b> were identified as ring intact limonoids, while compounds <b>8</b>—<b>10</b> were established as ring D-<i>seco</i> ones, and <b>11</b> and <b>12</b> were determined to be rearranged ones. All of the compounds were tested for cytotoxicity against three human tumor cell lines (HCT-116, NCl-H1975, and SH-SY5Y). Compounds <b>6</b>, <b>7</b>, <b>13</b>, <b>14</b>, and <b>19</b> exhibited significant cytotoxic effects, especially <b>7</b> exhibited significant cytotoxic effects against HCT-116 with an IC<sub>50</sub> value of 0.035 μmol·L<sup>–1</sup> and was more active than the positive control, doxorubicin with an IC<sub>50</sub> value of 0.20 μmol·L<sup>–1</sup>. Compound <b>7</b> effectively induced apoptosis of HCT-116, which was associated with S-phase cell cycle arrest. Furthermore, the Western blot analysis showed that compound <b>7</b> could induce cell cycle arrest by promoting the expression levels of p53 and p21.</p>\n <p>\n </p>\n </div>","PeriodicalId":151,"journal":{"name":"Chinese Journal of Chemistry","volume":"42 24","pages":"3567-3580"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structurally Diverse Limonoids from Trichilia connaroides and Their Antitumor Activities\",\"authors\":\"Ying Yan, Dan Wang, Fang-Jiao Zhou, Yu-Han Zhao, Xu-Jie Qin, Yu Zhang, Xiao Ding, Xiao-Jiang Hao\",\"doi\":\"10.1002/cjoc.202400923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Twelve new limonoids (<b>1</b>—<b>12</b>), named trichilitins A—L, were isolated from the leaves and twigs of <i>Trichilia connaroides</i>, together with ten known compounds (<b>13</b>—<b>22</b>). The structures were elucidated by extensive spectroscopic investigations, X-ray diffraction analyses, and ECD calculations. Compound <b>1</b>, which belongs to a unique class of ring B-<i>seco</i> limonoid, has been identified as 6/7/6/5 tetracyclic due to a key Baeyer-Villiger oxidation. Compounds <b>2</b>—<b>7</b> were identified as ring intact limonoids, while compounds <b>8</b>—<b>10</b> were established as ring D-<i>seco</i> ones, and <b>11</b> and <b>12</b> were determined to be rearranged ones. All of the compounds were tested for cytotoxicity against three human tumor cell lines (HCT-116, NCl-H1975, and SH-SY5Y). Compounds <b>6</b>, <b>7</b>, <b>13</b>, <b>14</b>, and <b>19</b> exhibited significant cytotoxic effects, especially <b>7</b> exhibited significant cytotoxic effects against HCT-116 with an IC<sub>50</sub> value of 0.035 μmol·L<sup>–1</sup> and was more active than the positive control, doxorubicin with an IC<sub>50</sub> value of 0.20 μmol·L<sup>–1</sup>. Compound <b>7</b> effectively induced apoptosis of HCT-116, which was associated with S-phase cell cycle arrest. Furthermore, the Western blot analysis showed that compound <b>7</b> could induce cell cycle arrest by promoting the expression levels of p53 and p21.</p>\\n <p>\\n </p>\\n </div>\",\"PeriodicalId\":151,\"journal\":{\"name\":\"Chinese Journal of Chemistry\",\"volume\":\"42 24\",\"pages\":\"3567-3580\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjoc.202400923\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjoc.202400923","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Structurally Diverse Limonoids from Trichilia connaroides and Their Antitumor Activities
Twelve new limonoids (1—12), named trichilitins A—L, were isolated from the leaves and twigs of Trichilia connaroides, together with ten known compounds (13—22). The structures were elucidated by extensive spectroscopic investigations, X-ray diffraction analyses, and ECD calculations. Compound 1, which belongs to a unique class of ring B-seco limonoid, has been identified as 6/7/6/5 tetracyclic due to a key Baeyer-Villiger oxidation. Compounds 2—7 were identified as ring intact limonoids, while compounds 8—10 were established as ring D-seco ones, and 11 and 12 were determined to be rearranged ones. All of the compounds were tested for cytotoxicity against three human tumor cell lines (HCT-116, NCl-H1975, and SH-SY5Y). Compounds 6, 7, 13, 14, and 19 exhibited significant cytotoxic effects, especially 7 exhibited significant cytotoxic effects against HCT-116 with an IC50 value of 0.035 μmol·L–1 and was more active than the positive control, doxorubicin with an IC50 value of 0.20 μmol·L–1. Compound 7 effectively induced apoptosis of HCT-116, which was associated with S-phase cell cycle arrest. Furthermore, the Western blot analysis showed that compound 7 could induce cell cycle arrest by promoting the expression levels of p53 and p21.
期刊介绍:
The Chinese Journal of Chemistry is an international forum for peer-reviewed original research results in all fields of chemistry. Founded in 1983 under the name Acta Chimica Sinica English Edition and renamed in 1990 as Chinese Journal of Chemistry, the journal publishes a stimulating mixture of Accounts, Full Papers, Notes and Communications in English.