Michael McKinlay, Lewis Fleming, Manuel Pelayo García, Lucía Nieto Sierra, Pilar Villar Castro, Daniel Araujo, Basilio Javier García, Des Gibson, Carlos García Nuñez
{"title":"论等离子体辅助直流溅射沉积法合成的氧化锌薄膜的压电特性","authors":"Michael McKinlay, Lewis Fleming, Manuel Pelayo García, Lucía Nieto Sierra, Pilar Villar Castro, Daniel Araujo, Basilio Javier García, Des Gibson, Carlos García Nuñez","doi":"10.1002/admi.202400252","DOIUrl":null,"url":null,"abstract":"<p>This work presents a study of piezoelectric zinc oxide (ZnO) thin films deposited by a novel post-reactive sputtering method. The process utilizes a rotating drum with DC magnetron sputtering deposition onto substrates with subsequent DC plasma-assisted oxidation of the deposited metal to metal oxide. The paper analyzes the influence of plasmaassisted magnetron sputtering (PA-MS) deposition parameters (O<sub>2</sub> plasma source power, O<sub>2</sub> flow, and Ar flow) on the morphological, structural, optical, and piezoelectric properties of ZnO thin films. Design of experiments has been utilized to evaluate the role of these parameters on the growth rate (<i>r</i><sub>g</sub>) and the properties of resulting films. Results indicate a predominant influence of the plasma power on the <i>r</i><sub>g</sub> over other parameters. Among the eight tested samples, three of them show high crystal quality with high intensity (0001) diffraction peak, characteristic of the wurtzite crystalline structure of ZnO, and one of them exhibits piezoelectric coefficient values of ≈11pC N<sup>−1</sup>. That sample corresponding to a ZnO film deposited at the lowest <i>r</i><sub>g</sub> of 0.075 nm s<sup>−1</sup>, confirmed the key role of the deposition parameters on the piezoelectric response of films, and demonstrated PA-MS as a promising technique to produce high-quality piezoelectric thin films.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"11 32","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400252","citationCount":"0","resultStr":"{\"title\":\"On the Piezoelectric Properties of Zinc Oxide Thin Films Synthesized by Plasma Assisted DC Sputter Deposition\",\"authors\":\"Michael McKinlay, Lewis Fleming, Manuel Pelayo García, Lucía Nieto Sierra, Pilar Villar Castro, Daniel Araujo, Basilio Javier García, Des Gibson, Carlos García Nuñez\",\"doi\":\"10.1002/admi.202400252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work presents a study of piezoelectric zinc oxide (ZnO) thin films deposited by a novel post-reactive sputtering method. The process utilizes a rotating drum with DC magnetron sputtering deposition onto substrates with subsequent DC plasma-assisted oxidation of the deposited metal to metal oxide. The paper analyzes the influence of plasmaassisted magnetron sputtering (PA-MS) deposition parameters (O<sub>2</sub> plasma source power, O<sub>2</sub> flow, and Ar flow) on the morphological, structural, optical, and piezoelectric properties of ZnO thin films. Design of experiments has been utilized to evaluate the role of these parameters on the growth rate (<i>r</i><sub>g</sub>) and the properties of resulting films. Results indicate a predominant influence of the plasma power on the <i>r</i><sub>g</sub> over other parameters. Among the eight tested samples, three of them show high crystal quality with high intensity (0001) diffraction peak, characteristic of the wurtzite crystalline structure of ZnO, and one of them exhibits piezoelectric coefficient values of ≈11pC N<sup>−1</sup>. That sample corresponding to a ZnO film deposited at the lowest <i>r</i><sub>g</sub> of 0.075 nm s<sup>−1</sup>, confirmed the key role of the deposition parameters on the piezoelectric response of films, and demonstrated PA-MS as a promising technique to produce high-quality piezoelectric thin films.</p>\",\"PeriodicalId\":115,\"journal\":{\"name\":\"Advanced Materials Interfaces\",\"volume\":\"11 32\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400252\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400252\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400252","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
On the Piezoelectric Properties of Zinc Oxide Thin Films Synthesized by Plasma Assisted DC Sputter Deposition
This work presents a study of piezoelectric zinc oxide (ZnO) thin films deposited by a novel post-reactive sputtering method. The process utilizes a rotating drum with DC magnetron sputtering deposition onto substrates with subsequent DC plasma-assisted oxidation of the deposited metal to metal oxide. The paper analyzes the influence of plasmaassisted magnetron sputtering (PA-MS) deposition parameters (O2 plasma source power, O2 flow, and Ar flow) on the morphological, structural, optical, and piezoelectric properties of ZnO thin films. Design of experiments has been utilized to evaluate the role of these parameters on the growth rate (rg) and the properties of resulting films. Results indicate a predominant influence of the plasma power on the rg over other parameters. Among the eight tested samples, three of them show high crystal quality with high intensity (0001) diffraction peak, characteristic of the wurtzite crystalline structure of ZnO, and one of them exhibits piezoelectric coefficient values of ≈11pC N−1. That sample corresponding to a ZnO film deposited at the lowest rg of 0.075 nm s−1, confirmed the key role of the deposition parameters on the piezoelectric response of films, and demonstrated PA-MS as a promising technique to produce high-quality piezoelectric thin films.
期刊介绍:
Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018.
The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface.
Advanced Materials Interfaces covers all topics in interface-related research:
Oil / water separation,
Applications of nanostructured materials,
2D materials and heterostructures,
Surfaces and interfaces in organic electronic devices,
Catalysis and membranes,
Self-assembly and nanopatterned surfaces,
Composite and coating materials,
Biointerfaces for technical and medical applications.
Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.