原始石墨烯上的各向异性氧化还原

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Interfaces Pub Date : 2024-10-10 DOI:10.1002/admi.202400374
Akshat R. Saraf, Jay Min Lim, Ravi F. Saraf
{"title":"原始石墨烯上的各向异性氧化还原","authors":"Akshat R. Saraf,&nbsp;Jay Min Lim,&nbsp;Ravi F. Saraf","doi":"10.1002/admi.202400374","DOIUrl":null,"url":null,"abstract":"<p>Chemically modified graphene is an attractive electrode material for electrocatalysis, energy devices, and sensors, whereas pristine graphene is electrochemically passive. The remarkable anisotropic electrochemical nature of graphene is uncovered by <i>π–π</i> interaction, making pristine graphene more active than bare Au. The <i>π–π</i> stacking during redox reaction “dopes” the graphene, disrupting the passivating hydration layer, making it a facile electrochemical electrode. The structure during <i>π–π</i> stacking-mediated redox of methylene blue (MB) is quantitatively measured by the differential reflectivity of a polarized laser on a ≈100 micron spot. The local redox reaction current varies over fourfold due to the orientation of the ≈10 micron size grains. The mosaic-grain anisotropy on each spot shows local uniaxial orientation. The redox signal at the optimum orientation is over 2.5-fold greater than that for bare Au on the same electrode. The redox signal is over fivefold greater at the edges of graphene compared bare Au. Remarkably, the <i>π–π</i> interaction increases chemical stability significantly, leading to negligible photo-degradation at the approximate absorption wavelength of MB. The exclusive redox activity due to <i>π–π</i> interaction on pristine graphene adds to the toolbox of making exotic opto-electrochemical electrode materials for electrocatalysis, sensing, and electronics.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"11 32","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400374","citationCount":"0","resultStr":"{\"title\":\"Anisotropic Redox on Pristine Graphene\",\"authors\":\"Akshat R. Saraf,&nbsp;Jay Min Lim,&nbsp;Ravi F. Saraf\",\"doi\":\"10.1002/admi.202400374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Chemically modified graphene is an attractive electrode material for electrocatalysis, energy devices, and sensors, whereas pristine graphene is electrochemically passive. The remarkable anisotropic electrochemical nature of graphene is uncovered by <i>π–π</i> interaction, making pristine graphene more active than bare Au. The <i>π–π</i> stacking during redox reaction “dopes” the graphene, disrupting the passivating hydration layer, making it a facile electrochemical electrode. The structure during <i>π–π</i> stacking-mediated redox of methylene blue (MB) is quantitatively measured by the differential reflectivity of a polarized laser on a ≈100 micron spot. The local redox reaction current varies over fourfold due to the orientation of the ≈10 micron size grains. The mosaic-grain anisotropy on each spot shows local uniaxial orientation. The redox signal at the optimum orientation is over 2.5-fold greater than that for bare Au on the same electrode. The redox signal is over fivefold greater at the edges of graphene compared bare Au. Remarkably, the <i>π–π</i> interaction increases chemical stability significantly, leading to negligible photo-degradation at the approximate absorption wavelength of MB. The exclusive redox activity due to <i>π–π</i> interaction on pristine graphene adds to the toolbox of making exotic opto-electrochemical electrode materials for electrocatalysis, sensing, and electronics.</p>\",\"PeriodicalId\":115,\"journal\":{\"name\":\"Advanced Materials Interfaces\",\"volume\":\"11 32\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400374\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400374\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400374","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

经化学修饰的石墨烯是一种极具吸引力的电极材料,可用于电催化、能源设备和传感器,而原始石墨烯在电化学上是被动的。π-π相互作用揭示了石墨烯显著的各向异性电化学性质,使原始石墨烯比裸金更活跃。氧化还原反应过程中的π-π堆叠 "掺杂 "了石墨烯,破坏了钝化水合层,使其成为一种易电化学电极。通过偏振激光在≈100 微米光斑上的差分反射率,定量测量了亚甲基蓝(MB)在π-π堆叠介导的氧化还原反应过程中的结构。由于尺寸为 ≈10 微米的晶粒的取向,局部氧化还原反应电流变化超过四倍。每个点上的镶嵌晶粒各向异性显示出局部单轴取向。最佳取向处的氧化还原信号比同一电极上的裸金大 2.5 倍以上。与裸金相比,石墨烯边缘的氧化还原信号高出五倍以上。值得注意的是,π-π 相互作用显著提高了化学稳定性,在甲基溴的近似吸收波长下,光降解可以忽略不计。原始石墨烯上的π-π相互作用所产生的独特氧化还原活性,为电催化、传感和电子学领域制造奇特的光电化学电极材料增添了新的手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Anisotropic Redox on Pristine Graphene

Chemically modified graphene is an attractive electrode material for electrocatalysis, energy devices, and sensors, whereas pristine graphene is electrochemically passive. The remarkable anisotropic electrochemical nature of graphene is uncovered by π–π interaction, making pristine graphene more active than bare Au. The π–π stacking during redox reaction “dopes” the graphene, disrupting the passivating hydration layer, making it a facile electrochemical electrode. The structure during π–π stacking-mediated redox of methylene blue (MB) is quantitatively measured by the differential reflectivity of a polarized laser on a ≈100 micron spot. The local redox reaction current varies over fourfold due to the orientation of the ≈10 micron size grains. The mosaic-grain anisotropy on each spot shows local uniaxial orientation. The redox signal at the optimum orientation is over 2.5-fold greater than that for bare Au on the same electrode. The redox signal is over fivefold greater at the edges of graphene compared bare Au. Remarkably, the π–π interaction increases chemical stability significantly, leading to negligible photo-degradation at the approximate absorption wavelength of MB. The exclusive redox activity due to π–π interaction on pristine graphene adds to the toolbox of making exotic opto-electrochemical electrode materials for electrocatalysis, sensing, and electronics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials Interfaces
Advanced Materials Interfaces CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.40
自引率
5.60%
发文量
1174
审稿时长
1.3 months
期刊介绍: Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018. The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface. Advanced Materials Interfaces covers all topics in interface-related research: Oil / water separation, Applications of nanostructured materials, 2D materials and heterostructures, Surfaces and interfaces in organic electronic devices, Catalysis and membranes, Self-assembly and nanopatterned surfaces, Composite and coating materials, Biointerfaces for technical and medical applications. Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.
期刊最新文献
Biphilic Functional Surfaces for Frost Prevention and Efficient Active Defrosting (Adv. Mater. Interfaces 32/2024) Masthead: (Adv. Mater. Interfaces 32/2024) Masthead: (Adv. Mater. Interfaces 31/2024) Methodology for Liquid Foam Templating of Hydrogel Foams: A Rheological and Tomographic Characterization (Adv. Mater. Interfaces 31/2024) Controlled Functionalization Strategy of Proteins Preserves their Structural Integrity While Binding to Nanocarriers (Adv. Mater. Interfaces 30/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1