利用剪切稀化半固体润滑剂实现宏观超润滑

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-11-16 DOI:10.1002/adma.202412257
Liucheng Wang, Liqiang Zhang, Runhao Zheng, Changhe Du, Tongtong Yu, Kunpeng Li, Weifeng Bu, Daoai Wang
{"title":"利用剪切稀化半固体润滑剂实现宏观超润滑","authors":"Liucheng Wang, Liqiang Zhang, Runhao Zheng, Changhe Du, Tongtong Yu, Kunpeng Li, Weifeng Bu, Daoai Wang","doi":"10.1002/adma.202412257","DOIUrl":null,"url":null,"abstract":"Macrosuperlubric materials are pivotal for reducing friction and wear in engineering applications. However, current solid superlubricants require intricate fabrication and specific conditions (e.g., vacuum or inert atmospheres), while liquid superlubricants are prone to creep, leakage, and corrosion. Here, a novel semisolid subnanometer nanowire (SNW) superlubrication material based on the shear-thinning effect is introduced to overcome these challenges. The SNWs achieve an exceptionally low friction coefficient (0.008–0.009) with silicon nitride (Si<sub>3</sub>N<sub>4</sub>) and polytetrafluoroethylene (PTFE) tribo-pairs, demonstrating a brief running-in period (≈39 s) and stable superlubrication over extended friction (12 h, &gt;120 000 cycles). The combination of the shear-thinning network structure mechanism, the adsorption membrane mechanism, and hydrodynamic effects provides a synergistic effect, playing a crucial role in achieving superlubricity. Additionally, SNWs can be combined with various base oils to create semisolid gel lubricants with superlubricating properties. This innovative approach addresses the limitations of current superlubrication systems and introduces a new category of semisolid gel lubricants, significantly expanding the applications of superlubrication materials.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"94 1 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Macroscale Superlubrication Achieved with Shear-Thinning Semisolid Lubricants\",\"authors\":\"Liucheng Wang, Liqiang Zhang, Runhao Zheng, Changhe Du, Tongtong Yu, Kunpeng Li, Weifeng Bu, Daoai Wang\",\"doi\":\"10.1002/adma.202412257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Macrosuperlubric materials are pivotal for reducing friction and wear in engineering applications. However, current solid superlubricants require intricate fabrication and specific conditions (e.g., vacuum or inert atmospheres), while liquid superlubricants are prone to creep, leakage, and corrosion. Here, a novel semisolid subnanometer nanowire (SNW) superlubrication material based on the shear-thinning effect is introduced to overcome these challenges. The SNWs achieve an exceptionally low friction coefficient (0.008–0.009) with silicon nitride (Si<sub>3</sub>N<sub>4</sub>) and polytetrafluoroethylene (PTFE) tribo-pairs, demonstrating a brief running-in period (≈39 s) and stable superlubrication over extended friction (12 h, &gt;120 000 cycles). The combination of the shear-thinning network structure mechanism, the adsorption membrane mechanism, and hydrodynamic effects provides a synergistic effect, playing a crucial role in achieving superlubricity. Additionally, SNWs can be combined with various base oils to create semisolid gel lubricants with superlubricating properties. This innovative approach addresses the limitations of current superlubrication systems and introduces a new category of semisolid gel lubricants, significantly expanding the applications of superlubrication materials.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"94 1 1\",\"pages\":\"\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202412257\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202412257","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在工程应用中,超润滑材料对于减少摩擦和磨损至关重要。然而,目前的固体超润滑剂需要复杂的制造工艺和特定的条件(如真空或惰性气氛),而液体超润滑剂则容易发生蠕变、泄漏和腐蚀。这里介绍一种基于剪切稀化效应的新型半固体亚纳米纳米线(SNW)超润滑材料,以克服这些挑战。SNW 与氮化硅(Si3N4)和聚四氟乙烯(PTFE)三元对实现了极低的摩擦系数(0.008-0.009),显示出短暂的磨合期(≈39 秒)和长时间摩擦(12 小时,12 万次循环)后的稳定超润滑。剪切稀化网络结构机理、吸附膜机理和流体力学效应相结合,产生了协同效应,在实现超润滑性方面发挥了关键作用。此外,SNW 还可与各种基础油结合,制成具有超润滑特性的半固体凝胶润滑剂。这种创新方法解决了当前超润滑系统的局限性,并引入了新的半固体凝胶润滑剂类别,大大扩展了超润滑材料的应用范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Macroscale Superlubrication Achieved with Shear-Thinning Semisolid Lubricants
Macrosuperlubric materials are pivotal for reducing friction and wear in engineering applications. However, current solid superlubricants require intricate fabrication and specific conditions (e.g., vacuum or inert atmospheres), while liquid superlubricants are prone to creep, leakage, and corrosion. Here, a novel semisolid subnanometer nanowire (SNW) superlubrication material based on the shear-thinning effect is introduced to overcome these challenges. The SNWs achieve an exceptionally low friction coefficient (0.008–0.009) with silicon nitride (Si3N4) and polytetrafluoroethylene (PTFE) tribo-pairs, demonstrating a brief running-in period (≈39 s) and stable superlubrication over extended friction (12 h, >120 000 cycles). The combination of the shear-thinning network structure mechanism, the adsorption membrane mechanism, and hydrodynamic effects provides a synergistic effect, playing a crucial role in achieving superlubricity. Additionally, SNWs can be combined with various base oils to create semisolid gel lubricants with superlubricating properties. This innovative approach addresses the limitations of current superlubrication systems and introduces a new category of semisolid gel lubricants, significantly expanding the applications of superlubrication materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Rare‐Metal‐Free Ultrabroadband Near‐Infrared Phosphors Highly‐Buckled Nanofibrous Ceramic Aerogels with Ultra‐Large Stretchability and Tensile‐Insensitive Thermal Insulation Electrical Dissipation Factor Measurements of Droplet Impact‐Derived Microgels with Different Topological Structures Local Proton‐Mediated Synthesis of a High‐Entropy Borate Library Surface-Assisted Passivation Growth of 2D Ultrathin β-Bi2O3 Crystals for High-Performance Polarization-Sensitive Photodetectors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1