介孔吖啶鎓基共价有机框架用于长寿命电荷分离激子介导的光催化 [4+2] 嵌合。

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-11-17 DOI:10.1002/adma.202413060
Ipsita Nath, Jeet Chakraborty, Kuber Singh Rawat, Yanwei Ji, Rundong Wang, Korneel Molkens, Nathalie De Geyter, Rino Morent, Veronique Van Speybroeck, Pieter Geiregat, Pascal Van Der Voort
{"title":"介孔吖啶鎓基共价有机框架用于长寿命电荷分离激子介导的光催化 [4+2] 嵌合。","authors":"Ipsita Nath, Jeet Chakraborty, Kuber Singh Rawat, Yanwei Ji, Rundong Wang, Korneel Molkens, Nathalie De Geyter, Rino Morent, Veronique Van Speybroeck, Pieter Geiregat, Pascal Van Der Voort","doi":"10.1002/adma.202413060","DOIUrl":null,"url":null,"abstract":"<p><p>Readily tuneable porosity and redox properties of covalent organic frameworks (COFs) result in highly customizable photocatalysts featuring extended electronic delocalization. However, fast charge recombination in COFs severely limits their photocatalytic activities. Herein a new mode of COF photocatalyst design strategy to introduce systematic trap states is programmed, which aids the formation and stabilization of long-lived charge-separated excitons. Installing cationic acridinium functionality in a pristine electron-rich triphenylamine COF via postsynthetic modification resulted in a semiconducting photocatalytic donor-acceptor dyad network that performed rapid and efficient oxidative Diels-Alder type [4+2] annulation of styrenes and alkynes to fused aromatic compounds under the atmospheric condition in good to excellent yields. Large mesopores of ≈4 nm diameter ensured efficient mass flow within the COF channel. It is confirmed that the catalytic performance of COF originates from the ultra-stable charge-separated excitons of 1.9 nm diameter with no apparent radiative charge-recombination pathway, endorsing almost a million times better photo-response and catalysis than the state-of-the-art.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":" ","pages":"e2413060"},"PeriodicalIF":27.4000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mesoporous Acridinium-Based Covalent Organic Framework for Long-lived Charge-Separated Exciton Mediated Photocatalytic [4+2] Annulation.\",\"authors\":\"Ipsita Nath, Jeet Chakraborty, Kuber Singh Rawat, Yanwei Ji, Rundong Wang, Korneel Molkens, Nathalie De Geyter, Rino Morent, Veronique Van Speybroeck, Pieter Geiregat, Pascal Van Der Voort\",\"doi\":\"10.1002/adma.202413060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Readily tuneable porosity and redox properties of covalent organic frameworks (COFs) result in highly customizable photocatalysts featuring extended electronic delocalization. However, fast charge recombination in COFs severely limits their photocatalytic activities. Herein a new mode of COF photocatalyst design strategy to introduce systematic trap states is programmed, which aids the formation and stabilization of long-lived charge-separated excitons. Installing cationic acridinium functionality in a pristine electron-rich triphenylamine COF via postsynthetic modification resulted in a semiconducting photocatalytic donor-acceptor dyad network that performed rapid and efficient oxidative Diels-Alder type [4+2] annulation of styrenes and alkynes to fused aromatic compounds under the atmospheric condition in good to excellent yields. Large mesopores of ≈4 nm diameter ensured efficient mass flow within the COF channel. It is confirmed that the catalytic performance of COF originates from the ultra-stable charge-separated excitons of 1.9 nm diameter with no apparent radiative charge-recombination pathway, endorsing almost a million times better photo-response and catalysis than the state-of-the-art.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\" \",\"pages\":\"e2413060\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202413060\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202413060","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

共价有机框架(COFs)的孔隙率和氧化还原特性可随时调整,因此可高度定制光催化剂,并具有扩展的电子脱焦功能。然而,COF 中的快速电荷重组严重限制了其光催化活性。本文提出了一种新的 COF 光催化剂设计策略模式,即引入系统陷阱态,从而帮助形成和稳定长寿命的电荷分离激子。通过后合成修饰,在原始的富电子三苯胺 COF 中加入阳离子吖啶官能团,形成了一个半导体光催化供体-受体二元网络,可在大气条件下快速、高效地氧化 Diels-Alder 型 [4+2] 苯乙烯和炔烃,生成融合的芳香族化合物,收率良好甚至极佳。直径 ≈4 nm 的大介孔确保了 COF 通道内的高效质量流。研究证实,COF 的催化性能源于直径为 1.9 nm 的超稳定电荷分离激子,没有明显的辐射电荷重组途径,其光响应和催化性能比最先进的催化剂高出近百万倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mesoporous Acridinium-Based Covalent Organic Framework for Long-lived Charge-Separated Exciton Mediated Photocatalytic [4+2] Annulation.

Readily tuneable porosity and redox properties of covalent organic frameworks (COFs) result in highly customizable photocatalysts featuring extended electronic delocalization. However, fast charge recombination in COFs severely limits their photocatalytic activities. Herein a new mode of COF photocatalyst design strategy to introduce systematic trap states is programmed, which aids the formation and stabilization of long-lived charge-separated excitons. Installing cationic acridinium functionality in a pristine electron-rich triphenylamine COF via postsynthetic modification resulted in a semiconducting photocatalytic donor-acceptor dyad network that performed rapid and efficient oxidative Diels-Alder type [4+2] annulation of styrenes and alkynes to fused aromatic compounds under the atmospheric condition in good to excellent yields. Large mesopores of ≈4 nm diameter ensured efficient mass flow within the COF channel. It is confirmed that the catalytic performance of COF originates from the ultra-stable charge-separated excitons of 1.9 nm diameter with no apparent radiative charge-recombination pathway, endorsing almost a million times better photo-response and catalysis than the state-of-the-art.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Cellulose Nanofiber-Supported Electrochemical Percolation of Capacitive Nanomaterials with 0D, 1D, and 2D Structures. Polymer-Formulated Nerve Growth Factor Shows Effective Therapeutic Efficacy for Cerebral Microinfarcts. Reticular Materials for Photocatalysis. Taming Prolonged Ionic Drift-Diffusion Dynamics for Brain-Inspired Computation. UNLEASH: Ultralow Nanocluster Loading of Pt via Electro-Acoustic Seasoning of Heterocatalysts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1