通过第一原理研究发现二维 Fe3GeTe2 单层的高稳定性 Janus 结构

IF 4.2 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Materials Science in Semiconductor Processing Pub Date : 2024-11-07 DOI:10.1016/j.mssp.2024.109055
Nguyen T. Hiep , Dinh T. Khan , Le T.P. Thao , Cuong Q. Nguyen , Bui D. Hoi , Huynh V. Phuc , Nguyen N. Hieu
{"title":"通过第一原理研究发现二维 Fe3GeTe2 单层的高稳定性 Janus 结构","authors":"Nguyen T. Hiep ,&nbsp;Dinh T. Khan ,&nbsp;Le T.P. Thao ,&nbsp;Cuong Q. Nguyen ,&nbsp;Bui D. Hoi ,&nbsp;Huynh V. Phuc ,&nbsp;Nguyen N. Hieu","doi":"10.1016/j.mssp.2024.109055","DOIUrl":null,"url":null,"abstract":"<div><div>In line with ongoing efforts on discovering new materials for the utilization in advanced nanotechnologies, in the present work, based on the original Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>GeTe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> material, two-dimensional Janus Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Ge<span><math><mi>X</mi></math></span>Te (<span><math><mrow><mi>X</mi><mo>=</mo></mrow></math></span> S and Se) monolayers are constructed and analyzed by using first-principles calculations. All three monolayers of Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>GeTe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>GeSTe, and Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>GeSeTe exhibit hexagonal structures with good dynamical stability. No negative frequency is observed in the phonon dispersion spectra. During the <em>ab initio</em> molecular dynamics simulation at room temperature, the Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Ge<span><math><mi>X</mi></math></span>Te structures are predicted to be thermally stable without any reconstruction/fracture, suggesting the high thermal stability of these systems. In addition, the Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Ge<span><math><mi>X</mi></math></span>Te monolayers show high negative cohesive energy of about <span><math><mrow><mo>−</mo><mn>5</mn></mrow></math></span> eV/atom and the obtained elastic constants satisfy the Born and Huang condition. Their Young’s modulus and Poisson’s ratio exhibit isotropic elastic behaviors due to the isotropic structures. These results confirm that the Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Ge<span><math><mi>X</mi></math></span>Te monolayers are energetically and mechanically stable for experimental synthesis. Especially, the electronic properties of our studied structures are explored for applications in electronic devices. The Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Ge<span><math><mi>X</mi></math></span>Te monolayers show a metallic nature for both the spin-up and spin-down cases. The projected density of states reveals that the Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>GeTe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>GeSTe, and Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>GeSeTe are magnetic materials due to their different spin-up and-down configurations. The results of our study can provide more information for the Janus Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Ge<span><math><mi>X</mi></math></span>Te materials and stimulate future experimental studies for practical applications in magnetic and electronic devices.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"186 ","pages":"Article 109055"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High stability Janus structures of two dimensional Fe3GeTe2 monolayer by first-principles investigations\",\"authors\":\"Nguyen T. Hiep ,&nbsp;Dinh T. Khan ,&nbsp;Le T.P. Thao ,&nbsp;Cuong Q. Nguyen ,&nbsp;Bui D. Hoi ,&nbsp;Huynh V. Phuc ,&nbsp;Nguyen N. Hieu\",\"doi\":\"10.1016/j.mssp.2024.109055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In line with ongoing efforts on discovering new materials for the utilization in advanced nanotechnologies, in the present work, based on the original Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>GeTe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> material, two-dimensional Janus Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Ge<span><math><mi>X</mi></math></span>Te (<span><math><mrow><mi>X</mi><mo>=</mo></mrow></math></span> S and Se) monolayers are constructed and analyzed by using first-principles calculations. All three monolayers of Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>GeTe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>GeSTe, and Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>GeSeTe exhibit hexagonal structures with good dynamical stability. No negative frequency is observed in the phonon dispersion spectra. During the <em>ab initio</em> molecular dynamics simulation at room temperature, the Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Ge<span><math><mi>X</mi></math></span>Te structures are predicted to be thermally stable without any reconstruction/fracture, suggesting the high thermal stability of these systems. In addition, the Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Ge<span><math><mi>X</mi></math></span>Te monolayers show high negative cohesive energy of about <span><math><mrow><mo>−</mo><mn>5</mn></mrow></math></span> eV/atom and the obtained elastic constants satisfy the Born and Huang condition. Their Young’s modulus and Poisson’s ratio exhibit isotropic elastic behaviors due to the isotropic structures. These results confirm that the Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Ge<span><math><mi>X</mi></math></span>Te monolayers are energetically and mechanically stable for experimental synthesis. Especially, the electronic properties of our studied structures are explored for applications in electronic devices. The Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Ge<span><math><mi>X</mi></math></span>Te monolayers show a metallic nature for both the spin-up and spin-down cases. The projected density of states reveals that the Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>GeTe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>GeSTe, and Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>GeSeTe are magnetic materials due to their different spin-up and-down configurations. The results of our study can provide more information for the Janus Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Ge<span><math><mi>X</mi></math></span>Te materials and stimulate future experimental studies for practical applications in magnetic and electronic devices.</div></div>\",\"PeriodicalId\":18240,\"journal\":{\"name\":\"Materials Science in Semiconductor Processing\",\"volume\":\"186 \",\"pages\":\"Article 109055\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science in Semiconductor Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S136980012400951X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Semiconductor Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136980012400951X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

为了配合不断发现新材料以用于先进纳米技术的努力,本研究在原始 Fe3GeTe2 材料的基础上,构建了二维 Janus Fe3GeXTe(X= S 和 Se)单层,并通过第一性原理计算对其进行了分析。Fe3GeTe2、Fe3GeSTe 和 Fe3GeSeTe 的所有三个单层都呈现六边形结构,具有良好的动态稳定性。在声子色散光谱中没有观察到负频率。在室温下的 ab initio 分子动力学模拟中,Fe3GeXTe 结构被预测为具有热稳定性,不会发生任何重构/断裂,这表明这些体系具有很高的热稳定性。此外,Fe3GeXTe 单层显示出约 -5 eV/atom 的高负内聚能,所获得的弹性常数满足 Born 和 Huang 条件。由于各向同性的结构,它们的杨氏模量和泊松比表现出各向同性的弹性行为。这些结果证实,Fe3GeXTe 单层在实验合成中具有能量和机械稳定性。特别是,我们对所研究结构的电子特性进行了探索,以便将其应用于电子器件中。Fe3GeXTe 单层在自旋上升和自旋下降的情况下都显示出金属性质。投影态密度显示,Fe3GeTe2、Fe3GeSTe 和 Fe3GeSeTe 因其不同的自旋上升和自旋下降构型而成为磁性材料。我们的研究结果可以为 Janus Fe3GeXTe 材料提供更多信息,并激励未来的实验研究,以促进磁性和电子器件的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High stability Janus structures of two dimensional Fe3GeTe2 monolayer by first-principles investigations
In line with ongoing efforts on discovering new materials for the utilization in advanced nanotechnologies, in the present work, based on the original Fe3GeTe2 material, two-dimensional Janus Fe3GeXTe (X= S and Se) monolayers are constructed and analyzed by using first-principles calculations. All three monolayers of Fe3GeTe2, Fe3GeSTe, and Fe3GeSeTe exhibit hexagonal structures with good dynamical stability. No negative frequency is observed in the phonon dispersion spectra. During the ab initio molecular dynamics simulation at room temperature, the Fe3GeXTe structures are predicted to be thermally stable without any reconstruction/fracture, suggesting the high thermal stability of these systems. In addition, the Fe3GeXTe monolayers show high negative cohesive energy of about 5 eV/atom and the obtained elastic constants satisfy the Born and Huang condition. Their Young’s modulus and Poisson’s ratio exhibit isotropic elastic behaviors due to the isotropic structures. These results confirm that the Fe3GeXTe monolayers are energetically and mechanically stable for experimental synthesis. Especially, the electronic properties of our studied structures are explored for applications in electronic devices. The Fe3GeXTe monolayers show a metallic nature for both the spin-up and spin-down cases. The projected density of states reveals that the Fe3GeTe2, Fe3GeSTe, and Fe3GeSeTe are magnetic materials due to their different spin-up and-down configurations. The results of our study can provide more information for the Janus Fe3GeXTe materials and stimulate future experimental studies for practical applications in magnetic and electronic devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science in Semiconductor Processing
Materials Science in Semiconductor Processing 工程技术-材料科学:综合
CiteScore
8.00
自引率
4.90%
发文量
780
审稿时长
42 days
期刊介绍: Materials Science in Semiconductor Processing provides a unique forum for the discussion of novel processing, applications and theoretical studies of functional materials and devices for (opto)electronics, sensors, detectors, biotechnology and green energy. Each issue will aim to provide a snapshot of current insights, new achievements, breakthroughs and future trends in such diverse fields as microelectronics, energy conversion and storage, communications, biotechnology, (photo)catalysis, nano- and thin-film technology, hybrid and composite materials, chemical processing, vapor-phase deposition, device fabrication, and modelling, which are the backbone of advanced semiconductor processing and applications. Coverage will include: advanced lithography for submicron devices; etching and related topics; ion implantation; damage evolution and related issues; plasma and thermal CVD; rapid thermal processing; advanced metallization and interconnect schemes; thin dielectric layers, oxidation; sol-gel processing; chemical bath and (electro)chemical deposition; compound semiconductor processing; new non-oxide materials and their applications; (macro)molecular and hybrid materials; molecular dynamics, ab-initio methods, Monte Carlo, etc.; new materials and processes for discrete and integrated circuits; magnetic materials and spintronics; heterostructures and quantum devices; engineering of the electrical and optical properties of semiconductors; crystal growth mechanisms; reliability, defect density, intrinsic impurities and defects.
期刊最新文献
Designing ZrO2-blended nanocomposite MIM capacitors for future OFET applications and their characterizations Electrochemically enzyme-free detection of lactic acid in human sweat using magnesium organic framework@carbon nanofiber composite Hydrogen behavior and microstructural evolution in flexible IGZO thin films under stress Bundling effect of semiconductor-enriched single-walled carbon nanotube networks on field-effect transistor performance Dual-function efficient hydrogen evolution reaction electrocatalyst and electrode material for supercapacitors based on ternary composite FeS2/Fe2O3/MoS2 nanostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1