Nguyen T. Hiep , Dinh T. Khan , Le T.P. Thao , Cuong Q. Nguyen , Bui D. Hoi , Huynh V. Phuc , Nguyen N. Hieu
{"title":"通过第一原理研究发现二维 Fe3GeTe2 单层的高稳定性 Janus 结构","authors":"Nguyen T. Hiep , Dinh T. Khan , Le T.P. Thao , Cuong Q. Nguyen , Bui D. Hoi , Huynh V. Phuc , Nguyen N. Hieu","doi":"10.1016/j.mssp.2024.109055","DOIUrl":null,"url":null,"abstract":"<div><div>In line with ongoing efforts on discovering new materials for the utilization in advanced nanotechnologies, in the present work, based on the original Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>GeTe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> material, two-dimensional Janus Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Ge<span><math><mi>X</mi></math></span>Te (<span><math><mrow><mi>X</mi><mo>=</mo></mrow></math></span> S and Se) monolayers are constructed and analyzed by using first-principles calculations. All three monolayers of Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>GeTe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>GeSTe, and Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>GeSeTe exhibit hexagonal structures with good dynamical stability. No negative frequency is observed in the phonon dispersion spectra. During the <em>ab initio</em> molecular dynamics simulation at room temperature, the Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Ge<span><math><mi>X</mi></math></span>Te structures are predicted to be thermally stable without any reconstruction/fracture, suggesting the high thermal stability of these systems. In addition, the Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Ge<span><math><mi>X</mi></math></span>Te monolayers show high negative cohesive energy of about <span><math><mrow><mo>−</mo><mn>5</mn></mrow></math></span> eV/atom and the obtained elastic constants satisfy the Born and Huang condition. Their Young’s modulus and Poisson’s ratio exhibit isotropic elastic behaviors due to the isotropic structures. These results confirm that the Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Ge<span><math><mi>X</mi></math></span>Te monolayers are energetically and mechanically stable for experimental synthesis. Especially, the electronic properties of our studied structures are explored for applications in electronic devices. The Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Ge<span><math><mi>X</mi></math></span>Te monolayers show a metallic nature for both the spin-up and spin-down cases. The projected density of states reveals that the Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>GeTe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>GeSTe, and Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>GeSeTe are magnetic materials due to their different spin-up and-down configurations. The results of our study can provide more information for the Janus Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Ge<span><math><mi>X</mi></math></span>Te materials and stimulate future experimental studies for practical applications in magnetic and electronic devices.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"186 ","pages":"Article 109055"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High stability Janus structures of two dimensional Fe3GeTe2 monolayer by first-principles investigations\",\"authors\":\"Nguyen T. Hiep , Dinh T. Khan , Le T.P. Thao , Cuong Q. Nguyen , Bui D. Hoi , Huynh V. Phuc , Nguyen N. Hieu\",\"doi\":\"10.1016/j.mssp.2024.109055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In line with ongoing efforts on discovering new materials for the utilization in advanced nanotechnologies, in the present work, based on the original Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>GeTe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> material, two-dimensional Janus Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Ge<span><math><mi>X</mi></math></span>Te (<span><math><mrow><mi>X</mi><mo>=</mo></mrow></math></span> S and Se) monolayers are constructed and analyzed by using first-principles calculations. All three monolayers of Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>GeTe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>GeSTe, and Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>GeSeTe exhibit hexagonal structures with good dynamical stability. No negative frequency is observed in the phonon dispersion spectra. During the <em>ab initio</em> molecular dynamics simulation at room temperature, the Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Ge<span><math><mi>X</mi></math></span>Te structures are predicted to be thermally stable without any reconstruction/fracture, suggesting the high thermal stability of these systems. In addition, the Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Ge<span><math><mi>X</mi></math></span>Te monolayers show high negative cohesive energy of about <span><math><mrow><mo>−</mo><mn>5</mn></mrow></math></span> eV/atom and the obtained elastic constants satisfy the Born and Huang condition. Their Young’s modulus and Poisson’s ratio exhibit isotropic elastic behaviors due to the isotropic structures. These results confirm that the Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Ge<span><math><mi>X</mi></math></span>Te monolayers are energetically and mechanically stable for experimental synthesis. Especially, the electronic properties of our studied structures are explored for applications in electronic devices. The Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Ge<span><math><mi>X</mi></math></span>Te monolayers show a metallic nature for both the spin-up and spin-down cases. The projected density of states reveals that the Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>GeTe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>GeSTe, and Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>GeSeTe are magnetic materials due to their different spin-up and-down configurations. The results of our study can provide more information for the Janus Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Ge<span><math><mi>X</mi></math></span>Te materials and stimulate future experimental studies for practical applications in magnetic and electronic devices.</div></div>\",\"PeriodicalId\":18240,\"journal\":{\"name\":\"Materials Science in Semiconductor Processing\",\"volume\":\"186 \",\"pages\":\"Article 109055\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science in Semiconductor Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S136980012400951X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Semiconductor Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136980012400951X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
为了配合不断发现新材料以用于先进纳米技术的努力,本研究在原始 Fe3GeTe2 材料的基础上,构建了二维 Janus Fe3GeXTe(X= S 和 Se)单层,并通过第一性原理计算对其进行了分析。Fe3GeTe2、Fe3GeSTe 和 Fe3GeSeTe 的所有三个单层都呈现六边形结构,具有良好的动态稳定性。在声子色散光谱中没有观察到负频率。在室温下的 ab initio 分子动力学模拟中,Fe3GeXTe 结构被预测为具有热稳定性,不会发生任何重构/断裂,这表明这些体系具有很高的热稳定性。此外,Fe3GeXTe 单层显示出约 -5 eV/atom 的高负内聚能,所获得的弹性常数满足 Born 和 Huang 条件。由于各向同性的结构,它们的杨氏模量和泊松比表现出各向同性的弹性行为。这些结果证实,Fe3GeXTe 单层在实验合成中具有能量和机械稳定性。特别是,我们对所研究结构的电子特性进行了探索,以便将其应用于电子器件中。Fe3GeXTe 单层在自旋上升和自旋下降的情况下都显示出金属性质。投影态密度显示,Fe3GeTe2、Fe3GeSTe 和 Fe3GeSeTe 因其不同的自旋上升和自旋下降构型而成为磁性材料。我们的研究结果可以为 Janus Fe3GeXTe 材料提供更多信息,并激励未来的实验研究,以促进磁性和电子器件的实际应用。
High stability Janus structures of two dimensional Fe3GeTe2 monolayer by first-principles investigations
In line with ongoing efforts on discovering new materials for the utilization in advanced nanotechnologies, in the present work, based on the original FeGeTe material, two-dimensional Janus FeGeTe ( S and Se) monolayers are constructed and analyzed by using first-principles calculations. All three monolayers of FeGeTe, FeGeSTe, and FeGeSeTe exhibit hexagonal structures with good dynamical stability. No negative frequency is observed in the phonon dispersion spectra. During the ab initio molecular dynamics simulation at room temperature, the FeGeTe structures are predicted to be thermally stable without any reconstruction/fracture, suggesting the high thermal stability of these systems. In addition, the FeGeTe monolayers show high negative cohesive energy of about eV/atom and the obtained elastic constants satisfy the Born and Huang condition. Their Young’s modulus and Poisson’s ratio exhibit isotropic elastic behaviors due to the isotropic structures. These results confirm that the FeGeTe monolayers are energetically and mechanically stable for experimental synthesis. Especially, the electronic properties of our studied structures are explored for applications in electronic devices. The FeGeTe monolayers show a metallic nature for both the spin-up and spin-down cases. The projected density of states reveals that the FeGeTe, FeGeSTe, and FeGeSeTe are magnetic materials due to their different spin-up and-down configurations. The results of our study can provide more information for the Janus FeGeTe materials and stimulate future experimental studies for practical applications in magnetic and electronic devices.
期刊介绍:
Materials Science in Semiconductor Processing provides a unique forum for the discussion of novel processing, applications and theoretical studies of functional materials and devices for (opto)electronics, sensors, detectors, biotechnology and green energy.
Each issue will aim to provide a snapshot of current insights, new achievements, breakthroughs and future trends in such diverse fields as microelectronics, energy conversion and storage, communications, biotechnology, (photo)catalysis, nano- and thin-film technology, hybrid and composite materials, chemical processing, vapor-phase deposition, device fabrication, and modelling, which are the backbone of advanced semiconductor processing and applications.
Coverage will include: advanced lithography for submicron devices; etching and related topics; ion implantation; damage evolution and related issues; plasma and thermal CVD; rapid thermal processing; advanced metallization and interconnect schemes; thin dielectric layers, oxidation; sol-gel processing; chemical bath and (electro)chemical deposition; compound semiconductor processing; new non-oxide materials and their applications; (macro)molecular and hybrid materials; molecular dynamics, ab-initio methods, Monte Carlo, etc.; new materials and processes for discrete and integrated circuits; magnetic materials and spintronics; heterostructures and quantum devices; engineering of the electrical and optical properties of semiconductors; crystal growth mechanisms; reliability, defect density, intrinsic impurities and defects.