{"title":"用于神经启发计算的基于稳定锡锌氧化物的晶闸管中的非线性和线性电导调制与突触可塑性","authors":"Rajwali Khan , Shahid Iqbal , Fazal Raziq , Pardha Saradhi Maram , Sabyasachi Chakrabortty , Sambasivam Sangaraju","doi":"10.1016/j.mssp.2024.109111","DOIUrl":null,"url":null,"abstract":"<div><div>Inducing post-transition metals in an oxide semiconductor system has a high potential for use in storage for neuromorphic computing. It is challenging to find a material that can be switched stably between multiple resistance states. This research explores the memristive properties of Sn (post-transition metal)-doped ZnO (SZO) thin films, emphasizing their application in memristor devices. The (magnetron sputtered) synthesized SZO thin films in the form of Ag/SZO/Au/Ti/SiO₂ device demonstrated a clear bipolar resistive switching (BRS) behavior with V<sub>SET</sub> and V<sub>RESET</sub> of 1.0 V and −0.75 V, respectively. The memristor could change between a high resistance state and a low resistance state with a high R<sub>ON/OFF</sub> rate of 10<sup>4</sup>, mimicking synaptic behaviors such as potentiation and depression. This switching is attributed to the formation and dissolution of Ag filaments within the SZO layer, influenced by the migration of Ag⁺ ions and the presence of oxygen vacancies. These vacancies facilitate the formation of conductive filaments under positive bias and their dissolution under negative bias. The endurance and retention tests showed stable switching characteristics, with the memristor maintaining distinct HRS and LRS over 100 cycles and retaining these states for over 5K seconds without significant degradation. Finally, the nonlinearity values for potentiation and depression were α<sub>p</sub>∼1.6 and α<sub>d</sub> ∼ -0.14, suggesting that the memristor may be more responsive to increasing synaptic weights in biological systems. The linearity response at a very small pulse width showed the device is more applicable for neuromorphic applications. The observed memristor combined with stable endurance and retention performance, suggests that this memristor structure could play a crucial role in the development of artificial synapses and memory technologies.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"186 ","pages":"Article 109111"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear and linear conductance modulation and synaptic plasticity in stable tin-zinc oxide based-memristor for neuro-inspired computing\",\"authors\":\"Rajwali Khan , Shahid Iqbal , Fazal Raziq , Pardha Saradhi Maram , Sabyasachi Chakrabortty , Sambasivam Sangaraju\",\"doi\":\"10.1016/j.mssp.2024.109111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Inducing post-transition metals in an oxide semiconductor system has a high potential for use in storage for neuromorphic computing. It is challenging to find a material that can be switched stably between multiple resistance states. This research explores the memristive properties of Sn (post-transition metal)-doped ZnO (SZO) thin films, emphasizing their application in memristor devices. The (magnetron sputtered) synthesized SZO thin films in the form of Ag/SZO/Au/Ti/SiO₂ device demonstrated a clear bipolar resistive switching (BRS) behavior with V<sub>SET</sub> and V<sub>RESET</sub> of 1.0 V and −0.75 V, respectively. The memristor could change between a high resistance state and a low resistance state with a high R<sub>ON/OFF</sub> rate of 10<sup>4</sup>, mimicking synaptic behaviors such as potentiation and depression. This switching is attributed to the formation and dissolution of Ag filaments within the SZO layer, influenced by the migration of Ag⁺ ions and the presence of oxygen vacancies. These vacancies facilitate the formation of conductive filaments under positive bias and their dissolution under negative bias. The endurance and retention tests showed stable switching characteristics, with the memristor maintaining distinct HRS and LRS over 100 cycles and retaining these states for over 5K seconds without significant degradation. Finally, the nonlinearity values for potentiation and depression were α<sub>p</sub>∼1.6 and α<sub>d</sub> ∼ -0.14, suggesting that the memristor may be more responsive to increasing synaptic weights in biological systems. The linearity response at a very small pulse width showed the device is more applicable for neuromorphic applications. The observed memristor combined with stable endurance and retention performance, suggests that this memristor structure could play a crucial role in the development of artificial synapses and memory technologies.</div></div>\",\"PeriodicalId\":18240,\"journal\":{\"name\":\"Materials Science in Semiconductor Processing\",\"volume\":\"186 \",\"pages\":\"Article 109111\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science in Semiconductor Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369800124010072\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Semiconductor Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369800124010072","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Nonlinear and linear conductance modulation and synaptic plasticity in stable tin-zinc oxide based-memristor for neuro-inspired computing
Inducing post-transition metals in an oxide semiconductor system has a high potential for use in storage for neuromorphic computing. It is challenging to find a material that can be switched stably between multiple resistance states. This research explores the memristive properties of Sn (post-transition metal)-doped ZnO (SZO) thin films, emphasizing their application in memristor devices. The (magnetron sputtered) synthesized SZO thin films in the form of Ag/SZO/Au/Ti/SiO₂ device demonstrated a clear bipolar resistive switching (BRS) behavior with VSET and VRESET of 1.0 V and −0.75 V, respectively. The memristor could change between a high resistance state and a low resistance state with a high RON/OFF rate of 104, mimicking synaptic behaviors such as potentiation and depression. This switching is attributed to the formation and dissolution of Ag filaments within the SZO layer, influenced by the migration of Ag⁺ ions and the presence of oxygen vacancies. These vacancies facilitate the formation of conductive filaments under positive bias and their dissolution under negative bias. The endurance and retention tests showed stable switching characteristics, with the memristor maintaining distinct HRS and LRS over 100 cycles and retaining these states for over 5K seconds without significant degradation. Finally, the nonlinearity values for potentiation and depression were αp∼1.6 and αd ∼ -0.14, suggesting that the memristor may be more responsive to increasing synaptic weights in biological systems. The linearity response at a very small pulse width showed the device is more applicable for neuromorphic applications. The observed memristor combined with stable endurance and retention performance, suggests that this memristor structure could play a crucial role in the development of artificial synapses and memory technologies.
期刊介绍:
Materials Science in Semiconductor Processing provides a unique forum for the discussion of novel processing, applications and theoretical studies of functional materials and devices for (opto)electronics, sensors, detectors, biotechnology and green energy.
Each issue will aim to provide a snapshot of current insights, new achievements, breakthroughs and future trends in such diverse fields as microelectronics, energy conversion and storage, communications, biotechnology, (photo)catalysis, nano- and thin-film technology, hybrid and composite materials, chemical processing, vapor-phase deposition, device fabrication, and modelling, which are the backbone of advanced semiconductor processing and applications.
Coverage will include: advanced lithography for submicron devices; etching and related topics; ion implantation; damage evolution and related issues; plasma and thermal CVD; rapid thermal processing; advanced metallization and interconnect schemes; thin dielectric layers, oxidation; sol-gel processing; chemical bath and (electro)chemical deposition; compound semiconductor processing; new non-oxide materials and their applications; (macro)molecular and hybrid materials; molecular dynamics, ab-initio methods, Monte Carlo, etc.; new materials and processes for discrete and integrated circuits; magnetic materials and spintronics; heterostructures and quantum devices; engineering of the electrical and optical properties of semiconductors; crystal growth mechanisms; reliability, defect density, intrinsic impurities and defects.