利用脉冲激光照射硅芯片产生的等离子体制备 PN 结的新方法

IF 1.4 4区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Solid-state Electronics Pub Date : 2024-11-08 DOI:10.1016/j.sse.2024.109023
Wei-Qi Huang , Yin-Lian Li , Zhong-Mei Huang , Hao-Ze Wang , Shi-Rong Liu
{"title":"利用脉冲激光照射硅芯片产生的等离子体制备 PN 结的新方法","authors":"Wei-Qi Huang ,&nbsp;Yin-Lian Li ,&nbsp;Zhong-Mei Huang ,&nbsp;Hao-Ze Wang ,&nbsp;Shi-Rong Liu","doi":"10.1016/j.sse.2024.109023","DOIUrl":null,"url":null,"abstract":"<div><div>We prepare the PN junction on silicon chip by a novel method with surface plasmon generated under pulsed laser irradiation. It is found that the interaction between laser photons and plasma produces a plasmon layer, in which the faster electrons take resonance with photons to generate surface electron gas. It is interesting that the electron gas in high vacuum and the plasmon polarized in various atmosphere are directly observed by the Talbot reflect image with outstanding challenge. It is demonstrated that injection and diffusion can be completed quickly to form higher quality PN region on interface between ions layer and substrate while the plasmon dipole makes resonance with phonon, where the quantum energy of plasmon is closed to the phonon energy in silicon crystal. In this novel way, the PN junction structure can be built by coherent photons on silicon chip at first, and the different preparing processes are explored comparatively by using the I-V curves measured with nonlinear characteristic of PN junction for application in optic-electronic integration field.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"223 ","pages":"Article 109023"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel method used to prepare PN junction by plasmon generated under pulsed laser irradiation on silicon chip\",\"authors\":\"Wei-Qi Huang ,&nbsp;Yin-Lian Li ,&nbsp;Zhong-Mei Huang ,&nbsp;Hao-Ze Wang ,&nbsp;Shi-Rong Liu\",\"doi\":\"10.1016/j.sse.2024.109023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We prepare the PN junction on silicon chip by a novel method with surface plasmon generated under pulsed laser irradiation. It is found that the interaction between laser photons and plasma produces a plasmon layer, in which the faster electrons take resonance with photons to generate surface electron gas. It is interesting that the electron gas in high vacuum and the plasmon polarized in various atmosphere are directly observed by the Talbot reflect image with outstanding challenge. It is demonstrated that injection and diffusion can be completed quickly to form higher quality PN region on interface between ions layer and substrate while the plasmon dipole makes resonance with phonon, where the quantum energy of plasmon is closed to the phonon energy in silicon crystal. In this novel way, the PN junction structure can be built by coherent photons on silicon chip at first, and the different preparing processes are explored comparatively by using the I-V curves measured with nonlinear characteristic of PN junction for application in optic-electronic integration field.</div></div>\",\"PeriodicalId\":21909,\"journal\":{\"name\":\"Solid-state Electronics\",\"volume\":\"223 \",\"pages\":\"Article 109023\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid-state Electronics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038110124001722\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110124001722","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们采用一种在脉冲激光照射下产生表面等离子体的新方法,在硅芯片上制备了 PN 结。研究发现,激光光子和等离子体之间的相互作用产生了等离子体层,其中速度较快的电子与光子发生共振,从而产生表面电子气。有趣的是,塔尔博特反射图像可以直接观测到高真空中的电子气和各种大气中的等离子体极化,具有很高的挑战性。实验证明,注入和扩散可以快速完成,从而在离子层和衬底之间的界面上形成更高质量的 PN 区域,同时等离子体偶极子与声子产生共振,而等离子体的量子能与硅晶体中的声子能接近。通过这种新颖的方法,相干光子可以在硅芯片上首先构建 PN 结结构,并利用测量到的 PN 结非线性特性的 I-V 曲线比较探讨了不同的制备过程,从而将其应用于光电子集成领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel method used to prepare PN junction by plasmon generated under pulsed laser irradiation on silicon chip
We prepare the PN junction on silicon chip by a novel method with surface plasmon generated under pulsed laser irradiation. It is found that the interaction between laser photons and plasma produces a plasmon layer, in which the faster electrons take resonance with photons to generate surface electron gas. It is interesting that the electron gas in high vacuum and the plasmon polarized in various atmosphere are directly observed by the Talbot reflect image with outstanding challenge. It is demonstrated that injection and diffusion can be completed quickly to form higher quality PN region on interface between ions layer and substrate while the plasmon dipole makes resonance with phonon, where the quantum energy of plasmon is closed to the phonon energy in silicon crystal. In this novel way, the PN junction structure can be built by coherent photons on silicon chip at first, and the different preparing processes are explored comparatively by using the I-V curves measured with nonlinear characteristic of PN junction for application in optic-electronic integration field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solid-state Electronics
Solid-state Electronics 物理-工程:电子与电气
CiteScore
3.00
自引率
5.90%
发文量
212
审稿时长
3 months
期刊介绍: It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.
期刊最新文献
A computational study of AlScN-based ferroelectric tunnel junction Characterization of LDMOS down to cryogenic temperatures and modeling with PSPHV A multi-level cell for ultra-scaled STT-MRAM realized by back-hopping Temperature influence on experimental analog behavior of MISHEMTs A novel method used to prepare PN junction by plasmon generated under pulsed laser irradiation on silicon chip
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1