Wei-Qi Huang , Yin-Lian Li , Zhong-Mei Huang , Hao-Ze Wang , Shi-Rong Liu
{"title":"利用脉冲激光照射硅芯片产生的等离子体制备 PN 结的新方法","authors":"Wei-Qi Huang , Yin-Lian Li , Zhong-Mei Huang , Hao-Ze Wang , Shi-Rong Liu","doi":"10.1016/j.sse.2024.109023","DOIUrl":null,"url":null,"abstract":"<div><div>We prepare the PN junction on silicon chip by a novel method with surface plasmon generated under pulsed laser irradiation. It is found that the interaction between laser photons and plasma produces a plasmon layer, in which the faster electrons take resonance with photons to generate surface electron gas. It is interesting that the electron gas in high vacuum and the plasmon polarized in various atmosphere are directly observed by the Talbot reflect image with outstanding challenge. It is demonstrated that injection and diffusion can be completed quickly to form higher quality PN region on interface between ions layer and substrate while the plasmon dipole makes resonance with phonon, where the quantum energy of plasmon is closed to the phonon energy in silicon crystal. In this novel way, the PN junction structure can be built by coherent photons on silicon chip at first, and the different preparing processes are explored comparatively by using the I-V curves measured with nonlinear characteristic of PN junction for application in optic-electronic integration field.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"223 ","pages":"Article 109023"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel method used to prepare PN junction by plasmon generated under pulsed laser irradiation on silicon chip\",\"authors\":\"Wei-Qi Huang , Yin-Lian Li , Zhong-Mei Huang , Hao-Ze Wang , Shi-Rong Liu\",\"doi\":\"10.1016/j.sse.2024.109023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We prepare the PN junction on silicon chip by a novel method with surface plasmon generated under pulsed laser irradiation. It is found that the interaction between laser photons and plasma produces a plasmon layer, in which the faster electrons take resonance with photons to generate surface electron gas. It is interesting that the electron gas in high vacuum and the plasmon polarized in various atmosphere are directly observed by the Talbot reflect image with outstanding challenge. It is demonstrated that injection and diffusion can be completed quickly to form higher quality PN region on interface between ions layer and substrate while the plasmon dipole makes resonance with phonon, where the quantum energy of plasmon is closed to the phonon energy in silicon crystal. In this novel way, the PN junction structure can be built by coherent photons on silicon chip at first, and the different preparing processes are explored comparatively by using the I-V curves measured with nonlinear characteristic of PN junction for application in optic-electronic integration field.</div></div>\",\"PeriodicalId\":21909,\"journal\":{\"name\":\"Solid-state Electronics\",\"volume\":\"223 \",\"pages\":\"Article 109023\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid-state Electronics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038110124001722\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110124001722","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A novel method used to prepare PN junction by plasmon generated under pulsed laser irradiation on silicon chip
We prepare the PN junction on silicon chip by a novel method with surface plasmon generated under pulsed laser irradiation. It is found that the interaction between laser photons and plasma produces a plasmon layer, in which the faster electrons take resonance with photons to generate surface electron gas. It is interesting that the electron gas in high vacuum and the plasmon polarized in various atmosphere are directly observed by the Talbot reflect image with outstanding challenge. It is demonstrated that injection and diffusion can be completed quickly to form higher quality PN region on interface between ions layer and substrate while the plasmon dipole makes resonance with phonon, where the quantum energy of plasmon is closed to the phonon energy in silicon crystal. In this novel way, the PN junction structure can be built by coherent photons on silicon chip at first, and the different preparing processes are explored comparatively by using the I-V curves measured with nonlinear characteristic of PN junction for application in optic-electronic integration field.
期刊介绍:
It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.