{"title":"通过热轧和调整铜浓度实现可生物降解 Zn-xCu 合金的超高强度和延展性","authors":"Ya Yang , Fei Zhao , Dongbing Cui , Yuanbiao Tan","doi":"10.1016/j.matchar.2024.114530","DOIUrl":null,"url":null,"abstract":"<div><div>In this present paper, a biodegradable Zn-<em>x</em>Cu alloys with an ultrahigh strength and ductility can be achieved via hot-rolling and tailoring Cu concentration, and the role of Cu concentration on the microstructure and texture evolution in the Zn-<em>x</em>Cu alloys during hot-rolling were investigated by XRD, EBSD and TEM analysis. The results show that the microstructure of as-cast Zn-<em>x</em>Cu alloys consisted of large sized CuZn<sub>5</sub> phase and Zn matrix grains before hot-rolling, and numerous submicron CuZn<sub>5</sub> phase can dynamically precipitate during hot-rolling of Zn-<em>x</em>Cu alloys. The existence of CuZn<sub>5</sub> phase can result in the particle stimulated nucleation of recrystallization (PSN), and then result in the formation of fine recrystallized grains. Moreover, three texture components including <span><math><mfenced><mn>0001</mn></mfenced><mo><</mo><mn>11</mn><mover><mn>2</mn><mo>¯</mo></mover><mn>0</mn><mo>></mo></math></span>, <span><math><mfenced><mrow><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>1</mn></mrow></mfenced><mo><</mo><mover><mn>1</mn><mo>¯</mo></mover><mn>012</mn><mo>></mo></math></span> and <span><math><mfenced><mrow><mn>11</mn><mover><mn>2</mn><mo>¯</mo></mover><mn>0</mn></mrow></mfenced><mo><</mo><mn>0001</mn><mo>></mo></math></span> textures can form in the Zn-<em>x</em>Cu alloys after hot-rolling. With boosting Cu concentration, the intensity of <span><math><mfenced><mrow><mn>11</mn><mover><mn>2</mn><mo>¯</mo></mover><mn>0</mn></mrow></mfenced><mo><</mo><mn>0001</mn><mo>></mo></math></span> texture gradually reduced, while the intensity of <span><math><mfenced><mn>0001</mn></mfenced><mo><</mo><mn>11</mn><mover><mn>2</mn><mo>¯</mo></mover><mn>0</mn><mo>></mo></math></span> and <span><math><mfenced><mrow><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>1</mn></mrow></mfenced><mo><</mo><mover><mn>1</mn><mo>¯</mo></mover><mn>012</mn><mo>></mo></math></span> texture components firstly raised with the augment of Cu concentration, and then reduced. For the Zn-<em>x</em>Cu alloys with 8 wt%Cu concentration, a combination of high yield strength, ultimate tensile strength and elongation (269.7 MPa, 322.9 MPa and 26.3 %) can be achieved, which can meet the high-performance demands of biodegradable metal vascular stents.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"218 ","pages":"Article 114530"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Achieving ultrahigh strength and ductility in biodegradable Zn-xCu alloys via hot-rolling and tailoring Cu concentration\",\"authors\":\"Ya Yang , Fei Zhao , Dongbing Cui , Yuanbiao Tan\",\"doi\":\"10.1016/j.matchar.2024.114530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this present paper, a biodegradable Zn-<em>x</em>Cu alloys with an ultrahigh strength and ductility can be achieved via hot-rolling and tailoring Cu concentration, and the role of Cu concentration on the microstructure and texture evolution in the Zn-<em>x</em>Cu alloys during hot-rolling were investigated by XRD, EBSD and TEM analysis. The results show that the microstructure of as-cast Zn-<em>x</em>Cu alloys consisted of large sized CuZn<sub>5</sub> phase and Zn matrix grains before hot-rolling, and numerous submicron CuZn<sub>5</sub> phase can dynamically precipitate during hot-rolling of Zn-<em>x</em>Cu alloys. The existence of CuZn<sub>5</sub> phase can result in the particle stimulated nucleation of recrystallization (PSN), and then result in the formation of fine recrystallized grains. Moreover, three texture components including <span><math><mfenced><mn>0001</mn></mfenced><mo><</mo><mn>11</mn><mover><mn>2</mn><mo>¯</mo></mover><mn>0</mn><mo>></mo></math></span>, <span><math><mfenced><mrow><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>1</mn></mrow></mfenced><mo><</mo><mover><mn>1</mn><mo>¯</mo></mover><mn>012</mn><mo>></mo></math></span> and <span><math><mfenced><mrow><mn>11</mn><mover><mn>2</mn><mo>¯</mo></mover><mn>0</mn></mrow></mfenced><mo><</mo><mn>0001</mn><mo>></mo></math></span> textures can form in the Zn-<em>x</em>Cu alloys after hot-rolling. With boosting Cu concentration, the intensity of <span><math><mfenced><mrow><mn>11</mn><mover><mn>2</mn><mo>¯</mo></mover><mn>0</mn></mrow></mfenced><mo><</mo><mn>0001</mn><mo>></mo></math></span> texture gradually reduced, while the intensity of <span><math><mfenced><mn>0001</mn></mfenced><mo><</mo><mn>11</mn><mover><mn>2</mn><mo>¯</mo></mover><mn>0</mn><mo>></mo></math></span> and <span><math><mfenced><mrow><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>1</mn></mrow></mfenced><mo><</mo><mover><mn>1</mn><mo>¯</mo></mover><mn>012</mn><mo>></mo></math></span> texture components firstly raised with the augment of Cu concentration, and then reduced. For the Zn-<em>x</em>Cu alloys with 8 wt%Cu concentration, a combination of high yield strength, ultimate tensile strength and elongation (269.7 MPa, 322.9 MPa and 26.3 %) can be achieved, which can meet the high-performance demands of biodegradable metal vascular stents.</div></div>\",\"PeriodicalId\":18727,\"journal\":{\"name\":\"Materials Characterization\",\"volume\":\"218 \",\"pages\":\"Article 114530\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Characterization\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1044580324009112\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580324009112","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
摘要
本文通过热轧和定制 Cu 浓度的方法获得了一种具有超高强度和延展性的可生物降解 Zn-xCu 合金,并通过 XRD、EBSD 和 TEM 分析研究了热轧过程中 Cu 浓度对 Zn-xCu 合金微观结构和纹理演变的影响。结果表明,热轧前 Zn-xCu 合金的铸态微观结构由大尺寸的 CuZn5 相和 Zn 基体晶粒组成,在 Zn-xCu 合金热轧过程中会动态析出大量亚微米级的 CuZn5 相。CuZn5 相的存在会导致颗粒刺激再结晶成核(PSN),进而形成细小的再结晶晶粒。此外,Zn-xCu 合金在热轧后可形成三种织构成分,包括 0001<112'0>、101'1<1'012>和 112'0<0001>织构。随着 Cu 浓度的增加,112'0<0001>纹理强度逐渐减弱,而 0001<112'0> 和 101'1<1'012>纹理成分的强度则先随 Cu 浓度的增加而增强,然后减弱。对于铜浓度为 8 wt% 的 Zn-xCu 合金,可以获得较高的屈服强度、极限拉伸强度和伸长率(分别为 269.7 MPa、322.9 MPa 和 26.3%),可以满足可降解金属血管支架的高性能要求。
Achieving ultrahigh strength and ductility in biodegradable Zn-xCu alloys via hot-rolling and tailoring Cu concentration
In this present paper, a biodegradable Zn-xCu alloys with an ultrahigh strength and ductility can be achieved via hot-rolling and tailoring Cu concentration, and the role of Cu concentration on the microstructure and texture evolution in the Zn-xCu alloys during hot-rolling were investigated by XRD, EBSD and TEM analysis. The results show that the microstructure of as-cast Zn-xCu alloys consisted of large sized CuZn5 phase and Zn matrix grains before hot-rolling, and numerous submicron CuZn5 phase can dynamically precipitate during hot-rolling of Zn-xCu alloys. The existence of CuZn5 phase can result in the particle stimulated nucleation of recrystallization (PSN), and then result in the formation of fine recrystallized grains. Moreover, three texture components including , and textures can form in the Zn-xCu alloys after hot-rolling. With boosting Cu concentration, the intensity of texture gradually reduced, while the intensity of and texture components firstly raised with the augment of Cu concentration, and then reduced. For the Zn-xCu alloys with 8 wt%Cu concentration, a combination of high yield strength, ultimate tensile strength and elongation (269.7 MPa, 322.9 MPa and 26.3 %) can be achieved, which can meet the high-performance demands of biodegradable metal vascular stents.
期刊介绍:
Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials.
The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal.
The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include:
Metals & Alloys
Ceramics
Nanomaterials
Biomedical materials
Optical materials
Composites
Natural Materials.