Xuanrui Zhang , Xiangyu Meng , Wenchao Zhu , Wuqiang Long , Mingshu Bi
{"title":"贫燃条件下合成氨与二甲醚蒸汽转化气和裂解气混合的实验和模拟研究","authors":"Xuanrui Zhang , Xiangyu Meng , Wenchao Zhu , Wuqiang Long , Mingshu Bi","doi":"10.1016/j.ijhydene.2024.10.177","DOIUrl":null,"url":null,"abstract":"<div><div>Dimethyl ether (DME) steam reforming (SR) and cracking (CR) can not only achieve on-line production of hydrogen (H<sub>2</sub>) and methane (CH<sub>4</sub>) but also increase fuel energy. The ammonia blending with DME-SR or DME-CR gases is an effective method to enhance the reactivity of ammonia combustion. This paper aims to compare the effects of DME-SR and DME-CR on combustion and emissions under lean-burn condition. In the constant volume combustion chamber (CVCC) experiments, the in-chamber pressure and flame propagation process were measured for NH<sub>3</sub>/H<sub>2</sub> and NH<sub>3</sub>/CH<sub>4</sub> blends, and NO emissions were visualized by chemiluminescence. A three-dimensional (3D) model was established with validation by the experimental data. Based on this model, the effects of DME-SR and DME-CR on combustion process and NO<sub>x</sub> emissions were studied. The results showed that both DME-SR and DME-CR can enhance the ammonia combustion process under lean-burn condition. The case with DME energy ratio 70% and the equivalence ratio of 0.4 for SR (X70ER0.4-SR), and X30ER0.5-SR can achieve faster combustion rates than pure ammonia at ER of 1.0 (X0ER0.9) due to the main reforming product of H<sub>2</sub>. The ammonia blended with fuels from DME-SR and CR can help to improve the NO emission under lean-burn condition, being lower than X0ER0.9. These findings highlight the advantages of using DME-SR and DME-CR for improving the ammonia combustion. Considering the fuel energy increment, DME-CR could be potential to obtain better fuel economy and emission improvement in real engine application.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"94 ","pages":"Pages 464-473"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and simulated study of ammonia blending with DME steam reformed and cracked gases under lean-burn condition\",\"authors\":\"Xuanrui Zhang , Xiangyu Meng , Wenchao Zhu , Wuqiang Long , Mingshu Bi\",\"doi\":\"10.1016/j.ijhydene.2024.10.177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Dimethyl ether (DME) steam reforming (SR) and cracking (CR) can not only achieve on-line production of hydrogen (H<sub>2</sub>) and methane (CH<sub>4</sub>) but also increase fuel energy. The ammonia blending with DME-SR or DME-CR gases is an effective method to enhance the reactivity of ammonia combustion. This paper aims to compare the effects of DME-SR and DME-CR on combustion and emissions under lean-burn condition. In the constant volume combustion chamber (CVCC) experiments, the in-chamber pressure and flame propagation process were measured for NH<sub>3</sub>/H<sub>2</sub> and NH<sub>3</sub>/CH<sub>4</sub> blends, and NO emissions were visualized by chemiluminescence. A three-dimensional (3D) model was established with validation by the experimental data. Based on this model, the effects of DME-SR and DME-CR on combustion process and NO<sub>x</sub> emissions were studied. The results showed that both DME-SR and DME-CR can enhance the ammonia combustion process under lean-burn condition. The case with DME energy ratio 70% and the equivalence ratio of 0.4 for SR (X70ER0.4-SR), and X30ER0.5-SR can achieve faster combustion rates than pure ammonia at ER of 1.0 (X0ER0.9) due to the main reforming product of H<sub>2</sub>. The ammonia blended with fuels from DME-SR and CR can help to improve the NO emission under lean-burn condition, being lower than X0ER0.9. These findings highlight the advantages of using DME-SR and DME-CR for improving the ammonia combustion. Considering the fuel energy increment, DME-CR could be potential to obtain better fuel economy and emission improvement in real engine application.</div></div>\",\"PeriodicalId\":337,\"journal\":{\"name\":\"International Journal of Hydrogen Energy\",\"volume\":\"94 \",\"pages\":\"Pages 464-473\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Hydrogen Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360319924043751\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319924043751","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Experimental and simulated study of ammonia blending with DME steam reformed and cracked gases under lean-burn condition
Dimethyl ether (DME) steam reforming (SR) and cracking (CR) can not only achieve on-line production of hydrogen (H2) and methane (CH4) but also increase fuel energy. The ammonia blending with DME-SR or DME-CR gases is an effective method to enhance the reactivity of ammonia combustion. This paper aims to compare the effects of DME-SR and DME-CR on combustion and emissions under lean-burn condition. In the constant volume combustion chamber (CVCC) experiments, the in-chamber pressure and flame propagation process were measured for NH3/H2 and NH3/CH4 blends, and NO emissions were visualized by chemiluminescence. A three-dimensional (3D) model was established with validation by the experimental data. Based on this model, the effects of DME-SR and DME-CR on combustion process and NOx emissions were studied. The results showed that both DME-SR and DME-CR can enhance the ammonia combustion process under lean-burn condition. The case with DME energy ratio 70% and the equivalence ratio of 0.4 for SR (X70ER0.4-SR), and X30ER0.5-SR can achieve faster combustion rates than pure ammonia at ER of 1.0 (X0ER0.9) due to the main reforming product of H2. The ammonia blended with fuels from DME-SR and CR can help to improve the NO emission under lean-burn condition, being lower than X0ER0.9. These findings highlight the advantages of using DME-SR and DME-CR for improving the ammonia combustion. Considering the fuel energy increment, DME-CR could be potential to obtain better fuel economy and emission improvement in real engine application.
期刊介绍:
The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc.
The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.