{"title":"绿色制氢过程中的技术故障和可靠性工程对策:数据库分析和文献综述的启示","authors":"Farhana Yasmine Tuhi , Marta Bucelli , Yiliu Liu","doi":"10.1016/j.ijhydene.2024.11.129","DOIUrl":null,"url":null,"abstract":"<div><div>Green hydrogen represents a promising solution for renewable energy application and carbon footprint reduction. However, its production through renewable energy powered water electrolysis is hindered by significant cost, arising from repair, maintenance, and economic losses due to unexpected downtimes. Although reliability engineering is highly effective in addressing such issues, there is limited research on its application in the hydrogen field. To present the state-of-the-art research, this study aims to explore the potential of reducing these events through reliability engineering, a widely adopted approach in various industries. For this purpose, it examines past accidents occurred in water electrolysis plants from the hydrogen incident and accident database (HIAD 2.1). Besides, a literature review is performed to analyze the state-of-the-art application of reliability engineering techniques, such as failure analysis, reliability assessment, and reliability-centered maintenance, in the hydrogen sector and similar industries. The study highlights the contributions and potentials of reliability engineering for efficient and stable green hydrogen production, while also discussing the gaps in applying this approach. The unique challenges posed by hydrogen's physical properties and innovative technologies in water electrolysis plants necessitate advancement and specialized approaches for reliability engineering.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"94 ","pages":"Pages 608-625"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Technical failures in green hydrogen production and reliability engineering responses: Insights from database analysis and a literature review\",\"authors\":\"Farhana Yasmine Tuhi , Marta Bucelli , Yiliu Liu\",\"doi\":\"10.1016/j.ijhydene.2024.11.129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Green hydrogen represents a promising solution for renewable energy application and carbon footprint reduction. However, its production through renewable energy powered water electrolysis is hindered by significant cost, arising from repair, maintenance, and economic losses due to unexpected downtimes. Although reliability engineering is highly effective in addressing such issues, there is limited research on its application in the hydrogen field. To present the state-of-the-art research, this study aims to explore the potential of reducing these events through reliability engineering, a widely adopted approach in various industries. For this purpose, it examines past accidents occurred in water electrolysis plants from the hydrogen incident and accident database (HIAD 2.1). Besides, a literature review is performed to analyze the state-of-the-art application of reliability engineering techniques, such as failure analysis, reliability assessment, and reliability-centered maintenance, in the hydrogen sector and similar industries. The study highlights the contributions and potentials of reliability engineering for efficient and stable green hydrogen production, while also discussing the gaps in applying this approach. The unique challenges posed by hydrogen's physical properties and innovative technologies in water electrolysis plants necessitate advancement and specialized approaches for reliability engineering.</div></div>\",\"PeriodicalId\":337,\"journal\":{\"name\":\"International Journal of Hydrogen Energy\",\"volume\":\"94 \",\"pages\":\"Pages 608-625\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Hydrogen Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360319924048092\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319924048092","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Technical failures in green hydrogen production and reliability engineering responses: Insights from database analysis and a literature review
Green hydrogen represents a promising solution for renewable energy application and carbon footprint reduction. However, its production through renewable energy powered water electrolysis is hindered by significant cost, arising from repair, maintenance, and economic losses due to unexpected downtimes. Although reliability engineering is highly effective in addressing such issues, there is limited research on its application in the hydrogen field. To present the state-of-the-art research, this study aims to explore the potential of reducing these events through reliability engineering, a widely adopted approach in various industries. For this purpose, it examines past accidents occurred in water electrolysis plants from the hydrogen incident and accident database (HIAD 2.1). Besides, a literature review is performed to analyze the state-of-the-art application of reliability engineering techniques, such as failure analysis, reliability assessment, and reliability-centered maintenance, in the hydrogen sector and similar industries. The study highlights the contributions and potentials of reliability engineering for efficient and stable green hydrogen production, while also discussing the gaps in applying this approach. The unique challenges posed by hydrogen's physical properties and innovative technologies in water electrolysis plants necessitate advancement and specialized approaches for reliability engineering.
期刊介绍:
The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc.
The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.