利用 CFD 建模开发和实际反应器设计对金属氢化物热泵系统进行性能分析

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL International Journal of Hydrogen Energy Pub Date : 2024-11-16 DOI:10.1016/j.ijhydene.2024.11.204
X.Y. Zhang, Y.T. Ge
{"title":"利用 CFD 建模开发和实际反应器设计对金属氢化物热泵系统进行性能分析","authors":"X.Y. Zhang,&nbsp;Y.T. Ge","doi":"10.1016/j.ijhydene.2024.11.204","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogen and metal hydride reactions in a decarbonized heat pump system with low-grade waste heat recovery offer a promising path for sustainable energy storage and conversion. Based on actual metal hydride reactor designs, this study developed a 2D transient Computational Fluid Dynamics (CFD) model for such a heat pump system working with hydrogen and a metal hydride alloy pair of Zr<sub>0.9</sub>Ti<sub>0.1</sub>Cr<sub>0.6</sub>Fe<sub>1.4</sub> and LaNi<sub>4.25</sub>Al<sub>0.75</sub>. The effects of operating temperatures on the coefficient of performance (COP) and specific heat power (SHP) of the system have been presented and analyzed. Subsequently, raising the medium-temperature heat sink (T<sub>M</sub>) from 358.15 K to 373.15 K, and low-temperature heat source (T<sub>L</sub>) from 308.15 K to 323.15 K, results in a decrease in the COP by 25.57%, and an increase in the COP by 38.2%, respectively. An optimum value of high-temperature heat source (T<sub>H</sub>) exists at 493.15 K for a maximum COP. In addition, the higher thermal conductivity increases the absorption and desorption capacity of hydrogen.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"94 ","pages":"Pages 1146-1159"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance analysis of metal hydride heat pump system with CFD modelling development and actual reactor designs\",\"authors\":\"X.Y. Zhang,&nbsp;Y.T. Ge\",\"doi\":\"10.1016/j.ijhydene.2024.11.204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hydrogen and metal hydride reactions in a decarbonized heat pump system with low-grade waste heat recovery offer a promising path for sustainable energy storage and conversion. Based on actual metal hydride reactor designs, this study developed a 2D transient Computational Fluid Dynamics (CFD) model for such a heat pump system working with hydrogen and a metal hydride alloy pair of Zr<sub>0.9</sub>Ti<sub>0.1</sub>Cr<sub>0.6</sub>Fe<sub>1.4</sub> and LaNi<sub>4.25</sub>Al<sub>0.75</sub>. The effects of operating temperatures on the coefficient of performance (COP) and specific heat power (SHP) of the system have been presented and analyzed. Subsequently, raising the medium-temperature heat sink (T<sub>M</sub>) from 358.15 K to 373.15 K, and low-temperature heat source (T<sub>L</sub>) from 308.15 K to 323.15 K, results in a decrease in the COP by 25.57%, and an increase in the COP by 38.2%, respectively. An optimum value of high-temperature heat source (T<sub>H</sub>) exists at 493.15 K for a maximum COP. In addition, the higher thermal conductivity increases the absorption and desorption capacity of hydrogen.</div></div>\",\"PeriodicalId\":337,\"journal\":{\"name\":\"International Journal of Hydrogen Energy\",\"volume\":\"94 \",\"pages\":\"Pages 1146-1159\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Hydrogen Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360319924048869\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319924048869","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在具有低品位余热回收功能的脱碳热泵系统中进行氢和金属氢化物反应,为可持续能源储存和转换提供了一条前景广阔的途径。本研究以实际的金属氢化物反应器设计为基础,为使用氢气和 Zr0.9Ti0.1Cr0.6Fe1.4 和 LaNi4.25Al0.75 金属氢化物合金的热泵系统开发了二维瞬态计算流体动力学(CFD)模型。研究分析了工作温度对系统性能系数(COP)和比热功率(SHP)的影响。随后,中温散热器 (TM) 从 358.15 K 提高到 373.15 K,低温热源 (TL) 从 308.15 K 提高到 323.15 K,分别导致 COP 下降 25.57%,COP 上升 38.2%。高温热源 (TH) 的最佳值为 493.15 K,以获得最大 COP。此外,较高的热导率还能提高氢气的吸收和解吸能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance analysis of metal hydride heat pump system with CFD modelling development and actual reactor designs
Hydrogen and metal hydride reactions in a decarbonized heat pump system with low-grade waste heat recovery offer a promising path for sustainable energy storage and conversion. Based on actual metal hydride reactor designs, this study developed a 2D transient Computational Fluid Dynamics (CFD) model for such a heat pump system working with hydrogen and a metal hydride alloy pair of Zr0.9Ti0.1Cr0.6Fe1.4 and LaNi4.25Al0.75. The effects of operating temperatures on the coefficient of performance (COP) and specific heat power (SHP) of the system have been presented and analyzed. Subsequently, raising the medium-temperature heat sink (TM) from 358.15 K to 373.15 K, and low-temperature heat source (TL) from 308.15 K to 323.15 K, results in a decrease in the COP by 25.57%, and an increase in the COP by 38.2%, respectively. An optimum value of high-temperature heat source (TH) exists at 493.15 K for a maximum COP. In addition, the higher thermal conductivity increases the absorption and desorption capacity of hydrogen.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
期刊最新文献
Editorial Board Efficient modulation of NiS2 catalyst via the Cu doping strategy to improve hydrogen evolution reactions in alkaline media Storage and regeneration of renewable energy via hydrogen - A novel power system integrating electrified methane reforming and gas-steam combined cycle High-efficiency electrocatalytic hydrogen generation under harsh acidic condition by commercially viable Pt nanocluster-decorated non-polar faceted GaN nanowires Effect of H/N ratio control in a multibed ammonia synthesis system with Ru-based catalysts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1