用于高性能 NiSe/CNT 水电解催化剂的离子液体处理技术

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL International Journal of Hydrogen Energy Pub Date : 2024-11-15 DOI:10.1016/j.ijhydene.2024.11.142
Jueshuo Fan , Lisha Shen , Chenglin Zhao , Zhida Wang , Zhiming Tu , Jiaxuan Hu , Changfeng Yan
{"title":"用于高性能 NiSe/CNT 水电解催化剂的离子液体处理技术","authors":"Jueshuo Fan ,&nbsp;Lisha Shen ,&nbsp;Chenglin Zhao ,&nbsp;Zhida Wang ,&nbsp;Zhiming Tu ,&nbsp;Jiaxuan Hu ,&nbsp;Changfeng Yan","doi":"10.1016/j.ijhydene.2024.11.142","DOIUrl":null,"url":null,"abstract":"<div><div>Nickel selenide (NiSe) and carbon nanotubes (CNTs) heterojunction structure water electrolysis catalyst was prepared by vapor deposition method, constructing a heterogeneous phase interface between NiSe and CNTs. The interface effect between NiSe and CNTs enhanced further π-electron delocalization of CNTs, increasing the local electron density at the Ni sites. Subsequent ionic liquids (ILs) treatment further resolved the aggregation issues of NiSe nanoparticles and carbon nanotubes, and facilitated further π-electron delocalization at the heterojunction. The imidazolium cations acted as “connectors,” tightly linking the CNTs and NiSe nanoparticles. The NiSe/CNT-IL exhibited an HER overpotential of 82 mV at 10 mA cm⁻<sup>2</sup> in 1 M KOH. Additionally, as a full water electrolysis catalyst in a water electrolyzer, it achieved a single-cell voltage of 1.965 V at a maximum current density of 500 mA cm⁻<sup>2</sup> at 60 °C. This direct IL functionalization for CNTs facilitates the electron transfer process and ILs can serve as the electron acceptor with superior hydrogen adsorption.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"94 ","pages":"Pages 774-781"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ion liquid treatment for high-performance NiSe/CNT water electrolysis catalyst\",\"authors\":\"Jueshuo Fan ,&nbsp;Lisha Shen ,&nbsp;Chenglin Zhao ,&nbsp;Zhida Wang ,&nbsp;Zhiming Tu ,&nbsp;Jiaxuan Hu ,&nbsp;Changfeng Yan\",\"doi\":\"10.1016/j.ijhydene.2024.11.142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nickel selenide (NiSe) and carbon nanotubes (CNTs) heterojunction structure water electrolysis catalyst was prepared by vapor deposition method, constructing a heterogeneous phase interface between NiSe and CNTs. The interface effect between NiSe and CNTs enhanced further π-electron delocalization of CNTs, increasing the local electron density at the Ni sites. Subsequent ionic liquids (ILs) treatment further resolved the aggregation issues of NiSe nanoparticles and carbon nanotubes, and facilitated further π-electron delocalization at the heterojunction. The imidazolium cations acted as “connectors,” tightly linking the CNTs and NiSe nanoparticles. The NiSe/CNT-IL exhibited an HER overpotential of 82 mV at 10 mA cm⁻<sup>2</sup> in 1 M KOH. Additionally, as a full water electrolysis catalyst in a water electrolyzer, it achieved a single-cell voltage of 1.965 V at a maximum current density of 500 mA cm⁻<sup>2</sup> at 60 °C. This direct IL functionalization for CNTs facilitates the electron transfer process and ILs can serve as the electron acceptor with superior hydrogen adsorption.</div></div>\",\"PeriodicalId\":337,\"journal\":{\"name\":\"International Journal of Hydrogen Energy\",\"volume\":\"94 \",\"pages\":\"Pages 774-781\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Hydrogen Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360319924048225\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319924048225","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

利用气相沉积法制备了硒化镍(NiSe)和碳纳米管(CNTs)异质结结构水电解催化剂,在硒化镍和碳纳米管之间构建了异质相界面。NiSe 和 CNTs 之间的界面效应进一步增强了 CNTs 的 π 电子析出,提高了 Ni 位点的局部电子密度。随后的离子液体(ILs)处理进一步解决了硒化镍纳米粒子和碳纳米管的聚集问题,并促进了异质结处的π电子脱ocal。咪唑阳离子起着 "连接器 "的作用,将碳纳米管和 NiSe 纳米粒子紧密连接在一起。在 1 M KOH 中,当电流为 10 mA cm-2 时,NiSe/CNT-IL 的 HER 过电位为 82 mV。此外,作为水电解槽中的全水电解催化剂,它在 60 °C 条件下以 500 mA cm-2 的最大电流密度实现了 1.965 V 的单电池电压。这种对 CNTs 的直接 IL 功能化促进了电子转移过程,ILs 可作为电子受体,并具有优异的氢吸附性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ion liquid treatment for high-performance NiSe/CNT water electrolysis catalyst
Nickel selenide (NiSe) and carbon nanotubes (CNTs) heterojunction structure water electrolysis catalyst was prepared by vapor deposition method, constructing a heterogeneous phase interface between NiSe and CNTs. The interface effect between NiSe and CNTs enhanced further π-electron delocalization of CNTs, increasing the local electron density at the Ni sites. Subsequent ionic liquids (ILs) treatment further resolved the aggregation issues of NiSe nanoparticles and carbon nanotubes, and facilitated further π-electron delocalization at the heterojunction. The imidazolium cations acted as “connectors,” tightly linking the CNTs and NiSe nanoparticles. The NiSe/CNT-IL exhibited an HER overpotential of 82 mV at 10 mA cm⁻2 in 1 M KOH. Additionally, as a full water electrolysis catalyst in a water electrolyzer, it achieved a single-cell voltage of 1.965 V at a maximum current density of 500 mA cm⁻2 at 60 °C. This direct IL functionalization for CNTs facilitates the electron transfer process and ILs can serve as the electron acceptor with superior hydrogen adsorption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
期刊最新文献
Editorial Board Efficient modulation of NiS2 catalyst via the Cu doping strategy to improve hydrogen evolution reactions in alkaline media Storage and regeneration of renewable energy via hydrogen - A novel power system integrating electrified methane reforming and gas-steam combined cycle High-efficiency electrocatalytic hydrogen generation under harsh acidic condition by commercially viable Pt nanocluster-decorated non-polar faceted GaN nanowires Effect of H/N ratio control in a multibed ammonia synthesis system with Ru-based catalysts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1