对流冻结和熔化过程中泥氢颗粒形态演变的相场-晶格玻尔兹曼法研究

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL International Journal of Hydrogen Energy Pub Date : 2024-11-16 DOI:10.1016/j.ijhydene.2024.11.013
Wan Guo , Fushou Xie , Yang Yu , Di Yang , Yanzhong Li
{"title":"对流冻结和熔化过程中泥氢颗粒形态演变的相场-晶格玻尔兹曼法研究","authors":"Wan Guo ,&nbsp;Fushou Xie ,&nbsp;Yang Yu ,&nbsp;Di Yang ,&nbsp;Yanzhong Li","doi":"10.1016/j.ijhydene.2024.11.013","DOIUrl":null,"url":null,"abstract":"<div><div>Freezing-thawing is one of the prevalent and pragmatic approach for the preparation of slush hydrogen. Understanding how production parameters affect the evolution of slush hydrogen particles is crucial for optimizing its efficiency. This study develops a two-dimensional Phase Field-Lattice Boltzmann Method (PF-LBM) to investigate the solidification and melting behavior of individual slush hydrogen particle under dynamic flow conditions. The proposed model integrates the Ginzburg-Landau theoretical phase-field model with a D2Q9 single-relaxation LBM. The variation of the phase and temperature fields of hydrogen particle during the freezing and melting process is investigated, and the role of vortices in shaping the profile of dendrites is found. Differences in dendrite growth at different flow rates and equilibrium temperatures are analyzed, and the variation in solid content is given. This study explores the mesoscopic mechanisms of slush hydrogen particle in a flowing field and provides theoretical guidance for the dynamic preparation of high-quality slush hydrogen.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"94 ","pages":"Pages 650-663"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase field-lattice Boltzmann method investigation of particle morphology evolution in slush hydrogen during convective freezing and melting\",\"authors\":\"Wan Guo ,&nbsp;Fushou Xie ,&nbsp;Yang Yu ,&nbsp;Di Yang ,&nbsp;Yanzhong Li\",\"doi\":\"10.1016/j.ijhydene.2024.11.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Freezing-thawing is one of the prevalent and pragmatic approach for the preparation of slush hydrogen. Understanding how production parameters affect the evolution of slush hydrogen particles is crucial for optimizing its efficiency. This study develops a two-dimensional Phase Field-Lattice Boltzmann Method (PF-LBM) to investigate the solidification and melting behavior of individual slush hydrogen particle under dynamic flow conditions. The proposed model integrates the Ginzburg-Landau theoretical phase-field model with a D2Q9 single-relaxation LBM. The variation of the phase and temperature fields of hydrogen particle during the freezing and melting process is investigated, and the role of vortices in shaping the profile of dendrites is found. Differences in dendrite growth at different flow rates and equilibrium temperatures are analyzed, and the variation in solid content is given. This study explores the mesoscopic mechanisms of slush hydrogen particle in a flowing field and provides theoretical guidance for the dynamic preparation of high-quality slush hydrogen.</div></div>\",\"PeriodicalId\":337,\"journal\":{\"name\":\"International Journal of Hydrogen Energy\",\"volume\":\"94 \",\"pages\":\"Pages 650-663\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Hydrogen Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360319924046676\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319924046676","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

冷冻-解冻是制备氢泥的一种普遍而实用的方法。了解生产参数如何影响氢泥颗粒的演变对于优化其效率至关重要。本研究开发了一种二维相场-晶格玻尔兹曼法(PF-LBM)来研究动态流动条件下单个氢泥颗粒的凝固和熔化行为。所提出的模型将金兹堡-朗道理论相场模型与 D2Q9 单松弛 LBM 相集成。研究了氢粒子在冻结和熔化过程中相场和温度场的变化,发现了涡流在形成枝晶轮廓中的作用。分析了不同流速和平衡温度下枝晶生长的差异,并给出了固体含量的变化。该研究探索了流动场中淤积氢粒子的介观机制,为高质量淤积氢的动态制备提供了理论指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phase field-lattice Boltzmann method investigation of particle morphology evolution in slush hydrogen during convective freezing and melting
Freezing-thawing is one of the prevalent and pragmatic approach for the preparation of slush hydrogen. Understanding how production parameters affect the evolution of slush hydrogen particles is crucial for optimizing its efficiency. This study develops a two-dimensional Phase Field-Lattice Boltzmann Method (PF-LBM) to investigate the solidification and melting behavior of individual slush hydrogen particle under dynamic flow conditions. The proposed model integrates the Ginzburg-Landau theoretical phase-field model with a D2Q9 single-relaxation LBM. The variation of the phase and temperature fields of hydrogen particle during the freezing and melting process is investigated, and the role of vortices in shaping the profile of dendrites is found. Differences in dendrite growth at different flow rates and equilibrium temperatures are analyzed, and the variation in solid content is given. This study explores the mesoscopic mechanisms of slush hydrogen particle in a flowing field and provides theoretical guidance for the dynamic preparation of high-quality slush hydrogen.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
期刊最新文献
Editorial Board Efficient modulation of NiS2 catalyst via the Cu doping strategy to improve hydrogen evolution reactions in alkaline media Storage and regeneration of renewable energy via hydrogen - A novel power system integrating electrified methane reforming and gas-steam combined cycle High-efficiency electrocatalytic hydrogen generation under harsh acidic condition by commercially viable Pt nanocluster-decorated non-polar faceted GaN nanowires Effect of H/N ratio control in a multibed ammonia synthesis system with Ru-based catalysts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1