{"title":"利用随机平流扩散方程进行非稳态时空建模","authors":"Martin Outzen Berild, Geir-Arne Fuglstad","doi":"10.1016/j.spasta.2024.100867","DOIUrl":null,"url":null,"abstract":"<div><div>We construct flexible spatio-temporal models through stochastic partial differential equations (SPDEs) where both diffusion and advection can be spatially varying. Computations are done through a Gaussian Markov random field approximation of the solution of the SPDE, which is constructed through a finite volume method. The new flexible non-separable model is compared to a flexible separable model both for reconstruction and forecasting, and evaluated in terms of root mean square errors and continuous rank probability scores. A simulation study demonstrates that the non-separable model performs better when the data is simulated from a non-separable model with diffusion and advection. Further, we estimate surrogate models for emulating the output of a ocean model in Trondheimsfjorden, Norway, and simulate observations of autonomous underwater vehicles. The results show that the flexible non-separable model outperforms the flexible separable model for real-time prediction of unobserved locations.</div></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":"64 ","pages":"Article 100867"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-stationary spatio-temporal modeling using the stochastic advection–diffusion equation\",\"authors\":\"Martin Outzen Berild, Geir-Arne Fuglstad\",\"doi\":\"10.1016/j.spasta.2024.100867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We construct flexible spatio-temporal models through stochastic partial differential equations (SPDEs) where both diffusion and advection can be spatially varying. Computations are done through a Gaussian Markov random field approximation of the solution of the SPDE, which is constructed through a finite volume method. The new flexible non-separable model is compared to a flexible separable model both for reconstruction and forecasting, and evaluated in terms of root mean square errors and continuous rank probability scores. A simulation study demonstrates that the non-separable model performs better when the data is simulated from a non-separable model with diffusion and advection. Further, we estimate surrogate models for emulating the output of a ocean model in Trondheimsfjorden, Norway, and simulate observations of autonomous underwater vehicles. The results show that the flexible non-separable model outperforms the flexible separable model for real-time prediction of unobserved locations.</div></div>\",\"PeriodicalId\":48771,\"journal\":{\"name\":\"Spatial Statistics\",\"volume\":\"64 \",\"pages\":\"Article 100867\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spatial Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211675324000587\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675324000587","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Non-stationary spatio-temporal modeling using the stochastic advection–diffusion equation
We construct flexible spatio-temporal models through stochastic partial differential equations (SPDEs) where both diffusion and advection can be spatially varying. Computations are done through a Gaussian Markov random field approximation of the solution of the SPDE, which is constructed through a finite volume method. The new flexible non-separable model is compared to a flexible separable model both for reconstruction and forecasting, and evaluated in terms of root mean square errors and continuous rank probability scores. A simulation study demonstrates that the non-separable model performs better when the data is simulated from a non-separable model with diffusion and advection. Further, we estimate surrogate models for emulating the output of a ocean model in Trondheimsfjorden, Norway, and simulate observations of autonomous underwater vehicles. The results show that the flexible non-separable model outperforms the flexible separable model for real-time prediction of unobserved locations.
期刊介绍:
Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication.
Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.