静水压力下无毒 RbBaX3(X = F、Cl、Br、I)包晶的结构、电子和光学特性的第一性原理研究

IF 4.2 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Materials Science in Semiconductor Processing Pub Date : 2024-11-16 DOI:10.1016/j.mssp.2024.109109
Pranti Saha , In Jun Park , Protik Das , Fariborz Kargar
{"title":"静水压力下无毒 RbBaX3(X = F、Cl、Br、I)包晶的结构、电子和光学特性的第一性原理研究","authors":"Pranti Saha ,&nbsp;In Jun Park ,&nbsp;Protik Das ,&nbsp;Fariborz Kargar","doi":"10.1016/j.mssp.2024.109109","DOIUrl":null,"url":null,"abstract":"<div><div>We have investigated the structural, mechanical, electronic and optical properties of Rb-based cubic perovskite RbBaX<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> (X = F, Cl, Br, I) under hydrostatic pressure, using first-principle density functional theory (DFT). All RbBaX<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> perovskites exhibit thermodynamic and mechanical stability at ambient pressure. RbBaF<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> remains structurally stable across all examined pressures, while RbBaCl<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, RbBaBr<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, and RbBaI<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> maintain mechanical stability up to 60, 60, and 40 GPa, respectively. These materials are ductile even at elevated pressure. RbBaF<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> has a direct bandgap of 4.80 eV while other compositions exhibit indirect band gaps of 4.37, 3.73, and 3.24 eV with halide atoms of Cl, Br, and I, respectively. Under elevated hydrostatic pressure, only RbBaCl<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> and RbBaI<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> exhibit an indirect-to-direct band transition while others preserve their nature of band gap. Our results show that spin–orbit coupling significantly affects only the valance bands of larger-sized halides (Cl, Br, I). With hybrid functional (HSE) correction, the band gaps of these four materials increase to 6.7, 5.6, 4.8 and 4.4 eV, respectively, but the nature of direct/indirect band transition remains unchanged. Orbital-decomposed partial density of states calculation reveals that the halogen <em>p</em>-orbitals dominate the valence band near the Fermi level, while Rb 5<em>s</em>-orbital affects the conduction band minima the most. Investigation of the optical properties reveals wide-band absorption, low electron loss, moderate reflectivity and lower refractive index in the UV to deep-UV range. The strength and range of absorption increases significantly with hydrostatic pressure, suggesting that RbBaX<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> perovskites are promising candidates for tunable UV-absorbing optoelectronic devices.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"187 ","pages":"Article 109109"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First-principles study of structural, electronic and optical properties of non-toxic RbBaX3 (X = F, Cl, Br, I) perovskites under hydrostatic pressure\",\"authors\":\"Pranti Saha ,&nbsp;In Jun Park ,&nbsp;Protik Das ,&nbsp;Fariborz Kargar\",\"doi\":\"10.1016/j.mssp.2024.109109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We have investigated the structural, mechanical, electronic and optical properties of Rb-based cubic perovskite RbBaX<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> (X = F, Cl, Br, I) under hydrostatic pressure, using first-principle density functional theory (DFT). All RbBaX<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> perovskites exhibit thermodynamic and mechanical stability at ambient pressure. RbBaF<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> remains structurally stable across all examined pressures, while RbBaCl<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, RbBaBr<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, and RbBaI<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> maintain mechanical stability up to 60, 60, and 40 GPa, respectively. These materials are ductile even at elevated pressure. RbBaF<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> has a direct bandgap of 4.80 eV while other compositions exhibit indirect band gaps of 4.37, 3.73, and 3.24 eV with halide atoms of Cl, Br, and I, respectively. Under elevated hydrostatic pressure, only RbBaCl<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> and RbBaI<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> exhibit an indirect-to-direct band transition while others preserve their nature of band gap. Our results show that spin–orbit coupling significantly affects only the valance bands of larger-sized halides (Cl, Br, I). With hybrid functional (HSE) correction, the band gaps of these four materials increase to 6.7, 5.6, 4.8 and 4.4 eV, respectively, but the nature of direct/indirect band transition remains unchanged. Orbital-decomposed partial density of states calculation reveals that the halogen <em>p</em>-orbitals dominate the valence band near the Fermi level, while Rb 5<em>s</em>-orbital affects the conduction band minima the most. Investigation of the optical properties reveals wide-band absorption, low electron loss, moderate reflectivity and lower refractive index in the UV to deep-UV range. The strength and range of absorption increases significantly with hydrostatic pressure, suggesting that RbBaX<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> perovskites are promising candidates for tunable UV-absorbing optoelectronic devices.</div></div>\",\"PeriodicalId\":18240,\"journal\":{\"name\":\"Materials Science in Semiconductor Processing\",\"volume\":\"187 \",\"pages\":\"Article 109109\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science in Semiconductor Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369800124010059\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Semiconductor Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369800124010059","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们利用第一原理密度泛函理论(DFT)研究了铷基立方包晶 RbBaX3(X = F、Cl、Br、I)在静水压力下的结构、机械、电子和光学特性。所有 RbBaX3 包晶在环境压力下都表现出热力学和机械稳定性。RbBaF3 在所有考察压力下都保持结构稳定,而 RbBaCl3、RbBaBr3 和 RbBaI3 则分别在 60、60 和 40 GPa 压力下保持机械稳定性。这些材料即使在高压下也具有延展性。RbBaF3 的直接带隙为 4.80 eV,而其他成分的间接带隙分别为 4.37、3.73 和 3.24 eV,卤化原子为 Cl、Br 和 I。在静水压升高的情况下,只有 RbBaCl3 和 RbBaI3 出现了间接带隙向直接带隙的转变,而其他成分则保持了它们的带隙性质。我们的研究结果表明,自旋轨道耦合只对较大尺寸的卤化物(Cl、Br、I)的价带有显著影响。经过混合函数(HSE)校正后,这四种材料的带隙分别增加到 6.7、5.6、4.8 和 4.4 eV,但直接/间接带转变的性质保持不变。轨道分解的部分状态密度计算显示,卤素 p 轨道在费米级附近的价带中占主导地位,而掺铒 5s 轨道对导带最小值的影响最大。对光学特性的研究表明,在紫外到深紫外范围内,该物质具有宽带吸收、低电子损耗、中等反射率和较低折射率。吸收的强度和范围随着静水压力的增加而显著增加,这表明 RbBaX3 包晶石有望成为可调紫外吸收光电器件的候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
First-principles study of structural, electronic and optical properties of non-toxic RbBaX3 (X = F, Cl, Br, I) perovskites under hydrostatic pressure
We have investigated the structural, mechanical, electronic and optical properties of Rb-based cubic perovskite RbBaX3 (X = F, Cl, Br, I) under hydrostatic pressure, using first-principle density functional theory (DFT). All RbBaX3 perovskites exhibit thermodynamic and mechanical stability at ambient pressure. RbBaF3 remains structurally stable across all examined pressures, while RbBaCl3, RbBaBr3, and RbBaI3 maintain mechanical stability up to 60, 60, and 40 GPa, respectively. These materials are ductile even at elevated pressure. RbBaF3 has a direct bandgap of 4.80 eV while other compositions exhibit indirect band gaps of 4.37, 3.73, and 3.24 eV with halide atoms of Cl, Br, and I, respectively. Under elevated hydrostatic pressure, only RbBaCl3 and RbBaI3 exhibit an indirect-to-direct band transition while others preserve their nature of band gap. Our results show that spin–orbit coupling significantly affects only the valance bands of larger-sized halides (Cl, Br, I). With hybrid functional (HSE) correction, the band gaps of these four materials increase to 6.7, 5.6, 4.8 and 4.4 eV, respectively, but the nature of direct/indirect band transition remains unchanged. Orbital-decomposed partial density of states calculation reveals that the halogen p-orbitals dominate the valence band near the Fermi level, while Rb 5s-orbital affects the conduction band minima the most. Investigation of the optical properties reveals wide-band absorption, low electron loss, moderate reflectivity and lower refractive index in the UV to deep-UV range. The strength and range of absorption increases significantly with hydrostatic pressure, suggesting that RbBaX3 perovskites are promising candidates for tunable UV-absorbing optoelectronic devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science in Semiconductor Processing
Materials Science in Semiconductor Processing 工程技术-材料科学:综合
CiteScore
8.00
自引率
4.90%
发文量
780
审稿时长
42 days
期刊介绍: Materials Science in Semiconductor Processing provides a unique forum for the discussion of novel processing, applications and theoretical studies of functional materials and devices for (opto)electronics, sensors, detectors, biotechnology and green energy. Each issue will aim to provide a snapshot of current insights, new achievements, breakthroughs and future trends in such diverse fields as microelectronics, energy conversion and storage, communications, biotechnology, (photo)catalysis, nano- and thin-film technology, hybrid and composite materials, chemical processing, vapor-phase deposition, device fabrication, and modelling, which are the backbone of advanced semiconductor processing and applications. Coverage will include: advanced lithography for submicron devices; etching and related topics; ion implantation; damage evolution and related issues; plasma and thermal CVD; rapid thermal processing; advanced metallization and interconnect schemes; thin dielectric layers, oxidation; sol-gel processing; chemical bath and (electro)chemical deposition; compound semiconductor processing; new non-oxide materials and their applications; (macro)molecular and hybrid materials; molecular dynamics, ab-initio methods, Monte Carlo, etc.; new materials and processes for discrete and integrated circuits; magnetic materials and spintronics; heterostructures and quantum devices; engineering of the electrical and optical properties of semiconductors; crystal growth mechanisms; reliability, defect density, intrinsic impurities and defects.
期刊最新文献
Designing ZrO2-blended nanocomposite MIM capacitors for future OFET applications and their characterizations Electrochemically enzyme-free detection of lactic acid in human sweat using magnesium organic framework@carbon nanofiber composite Hydrogen behavior and microstructural evolution in flexible IGZO thin films under stress Bundling effect of semiconductor-enriched single-walled carbon nanotube networks on field-effect transistor performance Dual-function efficient hydrogen evolution reaction electrocatalyst and electrode material for supercapacitors based on ternary composite FeS2/Fe2O3/MoS2 nanostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1