M. Leo Edward , M. Roselin Ranjitha , G. Thennarasu , E. Ranjith Kumar , A.F. Abd El-Rehim , V. Jaisankar
{"title":"用于减少锂离子电池枝晶的高性能柔性生物聚合物基氧化 Ce 复合电解质","authors":"M. Leo Edward , M. Roselin Ranjitha , G. Thennarasu , E. Ranjith Kumar , A.F. Abd El-Rehim , V. Jaisankar","doi":"10.1016/j.mssp.2024.109101","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a novel solid-state composite polymer electrolyte (CPE) that includes Li<sub>7</sub>La<sub>2.5</sub>Ce<sub>0.5</sub>Zr<sub>2</sub>O<sub>12</sub> (Ce-LLZO), chitosan (CS)/agar-agar (AA) polymer, polyethylene glycol (PEG) plasticizer, and LiClO<sub>4</sub> salt. At 25 °C, the CPE<sub>3</sub> formulation, consisting of 15 wt% Ce-LLZO, 60 wt% CS-AA, 15 wt% PEG, and 10 wt% LiClO<sub>4</sub>, demonstrated exceptional lithium (Li)-ion conductivity of 5.18 × 10<sup>-3</sup> S cm<sup>−1</sup> and an optimal transference number (TLi<sup>+</sup>) of 0.937. We assessed the electrochemical stability of CPE<sub>3</sub> using linear sweep voltammetry, which revealed a maximum stability limit of 4.1 V (versus Li/Li+). In addition, the coin cell made with the Li||CPE<sub>3</sub>||NMC configuration had an amazing discharge capacity of 163 mAhg-1 and stayed stable for up to 100 cycles at 0.1 °C in room temperature. Conversely, when subjected to Li-plating/stripping cycles, the symmetric Li||CPE<sub>3</sub>||Li cell exhibited stability for 550 h and maintained a current density of 2.0 mA cm<sup>−2</sup>. Compared to Li-metal, the proposed material exhibited reduced overpotential while simultaneously enhancing electrochemical stability.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"187 ","pages":"Article 109101"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A high-performance flexible biopolymer-based Ce oxide composite electrolyte for lithium-ion battery dendrite reduction\",\"authors\":\"M. Leo Edward , M. Roselin Ranjitha , G. Thennarasu , E. Ranjith Kumar , A.F. Abd El-Rehim , V. Jaisankar\",\"doi\":\"10.1016/j.mssp.2024.109101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We propose a novel solid-state composite polymer electrolyte (CPE) that includes Li<sub>7</sub>La<sub>2.5</sub>Ce<sub>0.5</sub>Zr<sub>2</sub>O<sub>12</sub> (Ce-LLZO), chitosan (CS)/agar-agar (AA) polymer, polyethylene glycol (PEG) plasticizer, and LiClO<sub>4</sub> salt. At 25 °C, the CPE<sub>3</sub> formulation, consisting of 15 wt% Ce-LLZO, 60 wt% CS-AA, 15 wt% PEG, and 10 wt% LiClO<sub>4</sub>, demonstrated exceptional lithium (Li)-ion conductivity of 5.18 × 10<sup>-3</sup> S cm<sup>−1</sup> and an optimal transference number (TLi<sup>+</sup>) of 0.937. We assessed the electrochemical stability of CPE<sub>3</sub> using linear sweep voltammetry, which revealed a maximum stability limit of 4.1 V (versus Li/Li+). In addition, the coin cell made with the Li||CPE<sub>3</sub>||NMC configuration had an amazing discharge capacity of 163 mAhg-1 and stayed stable for up to 100 cycles at 0.1 °C in room temperature. Conversely, when subjected to Li-plating/stripping cycles, the symmetric Li||CPE<sub>3</sub>||Li cell exhibited stability for 550 h and maintained a current density of 2.0 mA cm<sup>−2</sup>. Compared to Li-metal, the proposed material exhibited reduced overpotential while simultaneously enhancing electrochemical stability.</div></div>\",\"PeriodicalId\":18240,\"journal\":{\"name\":\"Materials Science in Semiconductor Processing\",\"volume\":\"187 \",\"pages\":\"Article 109101\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science in Semiconductor Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369800124009971\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Semiconductor Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369800124009971","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A high-performance flexible biopolymer-based Ce oxide composite electrolyte for lithium-ion battery dendrite reduction
We propose a novel solid-state composite polymer electrolyte (CPE) that includes Li7La2.5Ce0.5Zr2O12 (Ce-LLZO), chitosan (CS)/agar-agar (AA) polymer, polyethylene glycol (PEG) plasticizer, and LiClO4 salt. At 25 °C, the CPE3 formulation, consisting of 15 wt% Ce-LLZO, 60 wt% CS-AA, 15 wt% PEG, and 10 wt% LiClO4, demonstrated exceptional lithium (Li)-ion conductivity of 5.18 × 10-3 S cm−1 and an optimal transference number (TLi+) of 0.937. We assessed the electrochemical stability of CPE3 using linear sweep voltammetry, which revealed a maximum stability limit of 4.1 V (versus Li/Li+). In addition, the coin cell made with the Li||CPE3||NMC configuration had an amazing discharge capacity of 163 mAhg-1 and stayed stable for up to 100 cycles at 0.1 °C in room temperature. Conversely, when subjected to Li-plating/stripping cycles, the symmetric Li||CPE3||Li cell exhibited stability for 550 h and maintained a current density of 2.0 mA cm−2. Compared to Li-metal, the proposed material exhibited reduced overpotential while simultaneously enhancing electrochemical stability.
期刊介绍:
Materials Science in Semiconductor Processing provides a unique forum for the discussion of novel processing, applications and theoretical studies of functional materials and devices for (opto)electronics, sensors, detectors, biotechnology and green energy.
Each issue will aim to provide a snapshot of current insights, new achievements, breakthroughs and future trends in such diverse fields as microelectronics, energy conversion and storage, communications, biotechnology, (photo)catalysis, nano- and thin-film technology, hybrid and composite materials, chemical processing, vapor-phase deposition, device fabrication, and modelling, which are the backbone of advanced semiconductor processing and applications.
Coverage will include: advanced lithography for submicron devices; etching and related topics; ion implantation; damage evolution and related issues; plasma and thermal CVD; rapid thermal processing; advanced metallization and interconnect schemes; thin dielectric layers, oxidation; sol-gel processing; chemical bath and (electro)chemical deposition; compound semiconductor processing; new non-oxide materials and their applications; (macro)molecular and hybrid materials; molecular dynamics, ab-initio methods, Monte Carlo, etc.; new materials and processes for discrete and integrated circuits; magnetic materials and spintronics; heterostructures and quantum devices; engineering of the electrical and optical properties of semiconductors; crystal growth mechanisms; reliability, defect density, intrinsic impurities and defects.