Mauro Pietribiasi , John K. Leypoldt , Monika Wieliczko , Malgorzata Twardowska-Kawalec , Malgorzata Debowska , Jolanta Malyszko , Jacek Waniewski
{"title":"在每周一次的血液透析过程中以曲线方式输送碳酸氢盐","authors":"Mauro Pietribiasi , John K. Leypoldt , Monika Wieliczko , Malgorzata Twardowska-Kawalec , Malgorzata Debowska , Jolanta Malyszko , Jacek Waniewski","doi":"10.1016/j.bbe.2024.10.002","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Delivery of bicarbonate during hemodialysis (HD) is aimed at correcting metabolic acidosis in end-stage renal disease patients. We tested modified prescriptions of bicarbonate concentration in dialysis fluid (C<sub>D,bic</sub>), aimed to achieve an optimal pre-dialytic bicarbonate plasma concentration (C<sub>P,bic</sub>).</div></div><div><h3>Methods</h3><div>We used a mathematical model to prescribe individualized HD treatments consisting of 1) adjustment of C<sub>D,bic</sub> to get the pre-dialytic C<sub>P,bic</sub> in a prescribed range, 2) increase of bicarbonate load before the long interdialytic break, and 3) a single step of increase in C<sub>D,bic</sub> after two hours. The outcomes were tested in 24 stable HD patients, monitored during a week of standard HD (Test Week) and a week of modified treatment (Intervention Week).</div></div><div><h3>Results</h3><div>The response to the model-based prescription was different whether the average C<sub>D,bic</sub> during the Intervention Week was higher or lower than the constant value used for the Test Week. For patients with lower average C<sub>D,bic</sub> during the Intervention Week, a significant fraction achieved the target (22 ≤ C<sub>P,bic</sub> ≤ 24 mEq/L). In the group with higher average C<sub>D,bic</sub>, the interventions were effective only in increasing post-dialytic C<sub>P,bic</sub>. The simple step-increase profile was effective in linearizing the intradialytic increase in bicarbonate and decreasing the amount of time spent by patients at high plasma C<sub>P,bic</sub>.</div></div><div><h3>Conclusions</h3><div>The interventions were effective mostly in patients who needed to lower their pre-dialytic CP<sub>,bic</sub>. The resistance of the system to increasing pre-dialytic C<sub>P,bic</sub> in other patients might be caused by modifications of breathing or in hydrogen generation that were not accounted for by our model.</div></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":"44 4","pages":"Pages 836-843"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Profiled delivery of bicarbonate during weekly cycle of hemodialysis\",\"authors\":\"Mauro Pietribiasi , John K. Leypoldt , Monika Wieliczko , Malgorzata Twardowska-Kawalec , Malgorzata Debowska , Jolanta Malyszko , Jacek Waniewski\",\"doi\":\"10.1016/j.bbe.2024.10.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Delivery of bicarbonate during hemodialysis (HD) is aimed at correcting metabolic acidosis in end-stage renal disease patients. We tested modified prescriptions of bicarbonate concentration in dialysis fluid (C<sub>D,bic</sub>), aimed to achieve an optimal pre-dialytic bicarbonate plasma concentration (C<sub>P,bic</sub>).</div></div><div><h3>Methods</h3><div>We used a mathematical model to prescribe individualized HD treatments consisting of 1) adjustment of C<sub>D,bic</sub> to get the pre-dialytic C<sub>P,bic</sub> in a prescribed range, 2) increase of bicarbonate load before the long interdialytic break, and 3) a single step of increase in C<sub>D,bic</sub> after two hours. The outcomes were tested in 24 stable HD patients, monitored during a week of standard HD (Test Week) and a week of modified treatment (Intervention Week).</div></div><div><h3>Results</h3><div>The response to the model-based prescription was different whether the average C<sub>D,bic</sub> during the Intervention Week was higher or lower than the constant value used for the Test Week. For patients with lower average C<sub>D,bic</sub> during the Intervention Week, a significant fraction achieved the target (22 ≤ C<sub>P,bic</sub> ≤ 24 mEq/L). In the group with higher average C<sub>D,bic</sub>, the interventions were effective only in increasing post-dialytic C<sub>P,bic</sub>. The simple step-increase profile was effective in linearizing the intradialytic increase in bicarbonate and decreasing the amount of time spent by patients at high plasma C<sub>P,bic</sub>.</div></div><div><h3>Conclusions</h3><div>The interventions were effective mostly in patients who needed to lower their pre-dialytic CP<sub>,bic</sub>. The resistance of the system to increasing pre-dialytic C<sub>P,bic</sub> in other patients might be caused by modifications of breathing or in hydrogen generation that were not accounted for by our model.</div></div>\",\"PeriodicalId\":55381,\"journal\":{\"name\":\"Biocybernetics and Biomedical Engineering\",\"volume\":\"44 4\",\"pages\":\"Pages 836-843\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biocybernetics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0208521624000834\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocybernetics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0208521624000834","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Profiled delivery of bicarbonate during weekly cycle of hemodialysis
Background
Delivery of bicarbonate during hemodialysis (HD) is aimed at correcting metabolic acidosis in end-stage renal disease patients. We tested modified prescriptions of bicarbonate concentration in dialysis fluid (CD,bic), aimed to achieve an optimal pre-dialytic bicarbonate plasma concentration (CP,bic).
Methods
We used a mathematical model to prescribe individualized HD treatments consisting of 1) adjustment of CD,bic to get the pre-dialytic CP,bic in a prescribed range, 2) increase of bicarbonate load before the long interdialytic break, and 3) a single step of increase in CD,bic after two hours. The outcomes were tested in 24 stable HD patients, monitored during a week of standard HD (Test Week) and a week of modified treatment (Intervention Week).
Results
The response to the model-based prescription was different whether the average CD,bic during the Intervention Week was higher or lower than the constant value used for the Test Week. For patients with lower average CD,bic during the Intervention Week, a significant fraction achieved the target (22 ≤ CP,bic ≤ 24 mEq/L). In the group with higher average CD,bic, the interventions were effective only in increasing post-dialytic CP,bic. The simple step-increase profile was effective in linearizing the intradialytic increase in bicarbonate and decreasing the amount of time spent by patients at high plasma CP,bic.
Conclusions
The interventions were effective mostly in patients who needed to lower their pre-dialytic CP,bic. The resistance of the system to increasing pre-dialytic CP,bic in other patients might be caused by modifications of breathing or in hydrogen generation that were not accounted for by our model.
期刊介绍:
Biocybernetics and Biomedical Engineering is a quarterly journal, founded in 1981, devoted to publishing the results of original, innovative and creative research investigations in the field of Biocybernetics and biomedical engineering, which bridges mathematical, physical, chemical and engineering methods and technology to analyse physiological processes in living organisms as well as to develop methods, devices and systems used in biology and medicine, mainly in medical diagnosis, monitoring systems and therapy. The Journal''s mission is to advance scientific discovery into new or improved standards of care, and promotion a wide-ranging exchange between science and its application to humans.