Cu-BTC 衍生的八面体类 CuS-C@SnO2 p-n 异质结的界面电荷工程,用于提高储能性能

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL International Journal of Hydrogen Energy Pub Date : 2024-11-17 DOI:10.1016/j.ijhydene.2024.11.226
Yanan Chen, Yuanbo Zhao, Yanan Liu, Hongna Xing, Xiuhong Zhu, Juan Feng, Yan Zong, Chunyan Liao, Xinghua Li, Xinliang Zheng
{"title":"Cu-BTC 衍生的八面体类 CuS-C@SnO2 p-n 异质结的界面电荷工程,用于提高储能性能","authors":"Yanan Chen,&nbsp;Yuanbo Zhao,&nbsp;Yanan Liu,&nbsp;Hongna Xing,&nbsp;Xiuhong Zhu,&nbsp;Juan Feng,&nbsp;Yan Zong,&nbsp;Chunyan Liao,&nbsp;Xinghua Li,&nbsp;Xinliang Zheng","doi":"10.1016/j.ijhydene.2024.11.226","DOIUrl":null,"url":null,"abstract":"<div><div>Constructing unique interfaces is a reliable strategy for improving charge transfer kinetics of electrode materials and thus enhances their energy storage. Therefore, in this work, by using an ortho-octahedral Cu-BTC (Tricopper; benzene-1,3,5-tricarboxylate) to derive CuS and further anchoring SnO<sub>2</sub> nanoparticles on its surface, a CuS–C@SnO<sub>2</sub> p-n heterojunction with an octahedron-like structure is constructed. Benefiting from the joint influence of the novel structure and built-in electric field produced by the CuS–C@SnO<sub>2</sub> p-n heterojunction, the CuS–C@SnO<sub>2</sub> electrode shows a specific capacitance of 589.25 F g<sup>−1</sup> at 1 A g<sup>−1</sup> and an excellent rate capacity of 81.4% at 10 A g<sup>−1</sup>. Particularly, the packaged CuS–C@SnO<sub>2</sub>//AC asymmetric supercapacitor (ASC) represents a high energy density of 50.79 Wh kg<sup>−1</sup> at a power density of 800.01 W kg<sup>−1</sup> and an outstanding capacitance retention of 86.7% after 10000 cycles. In addition, by using density functional theory (DFT) calculations, we further confirm that CuS–C@SnO<sub>2</sub> p-n heterojunction has a satisfactory adsorption capacity for OH<sup>−</sup> and an accelerated transfer for free electrons by the electron rearrangements at the interface, which are beneficial for CuS–C@SnO<sub>2</sub> to enhance its storage capacity. This work provides an effective strategy for designing efficient energy storage devices.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"95 ","pages":"Pages 43-52"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interfacial charge engineering of Cu-BTC derived octahedron-like CuS–C@SnO2 p-n heterojunction for boosting energy storage performance\",\"authors\":\"Yanan Chen,&nbsp;Yuanbo Zhao,&nbsp;Yanan Liu,&nbsp;Hongna Xing,&nbsp;Xiuhong Zhu,&nbsp;Juan Feng,&nbsp;Yan Zong,&nbsp;Chunyan Liao,&nbsp;Xinghua Li,&nbsp;Xinliang Zheng\",\"doi\":\"10.1016/j.ijhydene.2024.11.226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Constructing unique interfaces is a reliable strategy for improving charge transfer kinetics of electrode materials and thus enhances their energy storage. Therefore, in this work, by using an ortho-octahedral Cu-BTC (Tricopper; benzene-1,3,5-tricarboxylate) to derive CuS and further anchoring SnO<sub>2</sub> nanoparticles on its surface, a CuS–C@SnO<sub>2</sub> p-n heterojunction with an octahedron-like structure is constructed. Benefiting from the joint influence of the novel structure and built-in electric field produced by the CuS–C@SnO<sub>2</sub> p-n heterojunction, the CuS–C@SnO<sub>2</sub> electrode shows a specific capacitance of 589.25 F g<sup>−1</sup> at 1 A g<sup>−1</sup> and an excellent rate capacity of 81.4% at 10 A g<sup>−1</sup>. Particularly, the packaged CuS–C@SnO<sub>2</sub>//AC asymmetric supercapacitor (ASC) represents a high energy density of 50.79 Wh kg<sup>−1</sup> at a power density of 800.01 W kg<sup>−1</sup> and an outstanding capacitance retention of 86.7% after 10000 cycles. In addition, by using density functional theory (DFT) calculations, we further confirm that CuS–C@SnO<sub>2</sub> p-n heterojunction has a satisfactory adsorption capacity for OH<sup>−</sup> and an accelerated transfer for free electrons by the electron rearrangements at the interface, which are beneficial for CuS–C@SnO<sub>2</sub> to enhance its storage capacity. This work provides an effective strategy for designing efficient energy storage devices.</div></div>\",\"PeriodicalId\":337,\"journal\":{\"name\":\"International Journal of Hydrogen Energy\",\"volume\":\"95 \",\"pages\":\"Pages 43-52\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Hydrogen Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360319924049085\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319924049085","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

构建独特的界面是改善电极材料电荷转移动力学从而提高其能量储存的可靠策略。因此,在这项工作中,通过使用正八面体 Cu-BTC(三铜;苯-1,3,5-三羧酸盐)衍生出 CuS,并进一步在其表面锚定 SnO2 纳米粒子,构建了具有八面体状结构的 CuS-C@SnO2 p-n 异质结。得益于新型结构和 CuS-C@SnO2 p-n 异质结产生的内置电场的共同影响,CuS-C@SnO2 电极在 1 A g-1 时的比电容为 589.25 F g-1,在 10 A g-1 时的速率容量为 81.4%。特别是,封装后的 CuS-C@SnO2/AC 不对称超级电容器(ASC)在功率密度为 800.01 W kg-1 时具有 50.79 Wh kg-1 的高能量密度,并且在 10000 次循环后具有 86.7% 的出色电容保持率。此外,通过使用密度泛函理论(DFT)计算,我们进一步证实了 CuS-C@SnO2 p-n 异质结对 OH- 具有令人满意的吸附能力,并通过界面上的电子重排加速了自由电子的转移,这有利于 CuS-C@SnO2 提高其存储容量。这项工作为设计高效储能器件提供了一种有效的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interfacial charge engineering of Cu-BTC derived octahedron-like CuS–C@SnO2 p-n heterojunction for boosting energy storage performance
Constructing unique interfaces is a reliable strategy for improving charge transfer kinetics of electrode materials and thus enhances their energy storage. Therefore, in this work, by using an ortho-octahedral Cu-BTC (Tricopper; benzene-1,3,5-tricarboxylate) to derive CuS and further anchoring SnO2 nanoparticles on its surface, a CuS–C@SnO2 p-n heterojunction with an octahedron-like structure is constructed. Benefiting from the joint influence of the novel structure and built-in electric field produced by the CuS–C@SnO2 p-n heterojunction, the CuS–C@SnO2 electrode shows a specific capacitance of 589.25 F g−1 at 1 A g−1 and an excellent rate capacity of 81.4% at 10 A g−1. Particularly, the packaged CuS–C@SnO2//AC asymmetric supercapacitor (ASC) represents a high energy density of 50.79 Wh kg−1 at a power density of 800.01 W kg−1 and an outstanding capacitance retention of 86.7% after 10000 cycles. In addition, by using density functional theory (DFT) calculations, we further confirm that CuS–C@SnO2 p-n heterojunction has a satisfactory adsorption capacity for OH and an accelerated transfer for free electrons by the electron rearrangements at the interface, which are beneficial for CuS–C@SnO2 to enhance its storage capacity. This work provides an effective strategy for designing efficient energy storage devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
期刊最新文献
Editorial Board Efficient modulation of NiS2 catalyst via the Cu doping strategy to improve hydrogen evolution reactions in alkaline media Storage and regeneration of renewable energy via hydrogen - A novel power system integrating electrified methane reforming and gas-steam combined cycle High-efficiency electrocatalytic hydrogen generation under harsh acidic condition by commercially viable Pt nanocluster-decorated non-polar faceted GaN nanowires Effect of H/N ratio control in a multibed ammonia synthesis system with Ru-based catalysts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1