{"title":"使用石墨压盖填料安装氢气分离膜管以进行 HI 分解膜反应的密封部分泄漏流量定量评估","authors":"Chihiro Sugimoto , Odtsetseg Myagmarjav , Nobuyuki Tanaka , Hiroki Noguchi , Hiroaki Takegami , Shinji Kubo","doi":"10.1016/j.ijhydene.2024.10.334","DOIUrl":null,"url":null,"abstract":"<div><div>The thermal efficiency of hydrogen production in the thermochemical iodine-sulfur (or sulfur-iodine) can be effectively enhanced using a membrane reactor for the HI decomposition reaction (about 500 °C) for hydrogen production. The attachment of ceramic tubes, made of brittle materials, for hydrogen separation membranes to a tube plate via sealing parts is a critical aspect of this process. A quantitative procedure was specified to make an expanded graphite grand packing exhibit sealing performance. The applicability of the method was tested during 50 thermal cycles ranging between 25°C-450 °C and gas pressure of 0.3–0.9 MPa. The leakage flow rate using a dummy membrane tube and helium gas (a tracer gas) was approximately 2 × 10<sup>−5</sup> Pa m<sup>3</sup> s<sup>−1</sup>. This value is comparable to the detection limit of the standard bubble leak test, indicating the effectiveness of this sealing procedure. Furthermore, the leakage flow rate was proportional to the differential pressure applied to the sealing part, suggesting a molecular flow type. This allows for estimating the leakage flow rate by introducing the conductance of flow paths, formulated based on the molecular kinetic theory of gases. An estimation method of the leakage flow rate at any packing size and any pressure difference is proposed, which can help design future practical membrane reactors.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"95 ","pages":"Pages 98-107"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative evaluation of leakage flow rate in the sealing part using graphite gland packing to mount a hydrogen separation membrane tube for HI decomposition membrane reaction\",\"authors\":\"Chihiro Sugimoto , Odtsetseg Myagmarjav , Nobuyuki Tanaka , Hiroki Noguchi , Hiroaki Takegami , Shinji Kubo\",\"doi\":\"10.1016/j.ijhydene.2024.10.334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The thermal efficiency of hydrogen production in the thermochemical iodine-sulfur (or sulfur-iodine) can be effectively enhanced using a membrane reactor for the HI decomposition reaction (about 500 °C) for hydrogen production. The attachment of ceramic tubes, made of brittle materials, for hydrogen separation membranes to a tube plate via sealing parts is a critical aspect of this process. A quantitative procedure was specified to make an expanded graphite grand packing exhibit sealing performance. The applicability of the method was tested during 50 thermal cycles ranging between 25°C-450 °C and gas pressure of 0.3–0.9 MPa. The leakage flow rate using a dummy membrane tube and helium gas (a tracer gas) was approximately 2 × 10<sup>−5</sup> Pa m<sup>3</sup> s<sup>−1</sup>. This value is comparable to the detection limit of the standard bubble leak test, indicating the effectiveness of this sealing procedure. Furthermore, the leakage flow rate was proportional to the differential pressure applied to the sealing part, suggesting a molecular flow type. This allows for estimating the leakage flow rate by introducing the conductance of flow paths, formulated based on the molecular kinetic theory of gases. An estimation method of the leakage flow rate at any packing size and any pressure difference is proposed, which can help design future practical membrane reactors.</div></div>\",\"PeriodicalId\":337,\"journal\":{\"name\":\"International Journal of Hydrogen Energy\",\"volume\":\"95 \",\"pages\":\"Pages 98-107\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Hydrogen Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360319924045403\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319924045403","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
利用膜反应器进行 HI 分解反应(约 500 ℃)制氢,可有效提高热化学碘硫(或硫碘)制氢的热效率。氢气分离膜用脆性材料制成的陶瓷管通过密封部件固定在管板上是这一过程的关键环节。为使膨胀石墨大填料表现出密封性能,指定了一个定量程序。在 25°C-450°C 和 0.3-0.9 兆帕的气体压力下进行了 50 次热循环,测试了该方法的适用性。使用假膜管和氦气(示踪气体)测得的泄漏流量约为 2 × 10-5 Pa m3 s-1。这一数值与标准气泡泄漏测试的检测极限相当,表明了这一密封程序的有效性。此外,泄漏流量与施加在密封部件上的压差成正比,表明这是一种分子流动类型。这样就可以通过引入基于气体分子动力学理论制定的流动路径电导来估算泄漏流量。本文提出了一种在任何填料尺寸和任何压力差条件下的泄漏流速估算方法,有助于设计未来的实用膜反应器。
Quantitative evaluation of leakage flow rate in the sealing part using graphite gland packing to mount a hydrogen separation membrane tube for HI decomposition membrane reaction
The thermal efficiency of hydrogen production in the thermochemical iodine-sulfur (or sulfur-iodine) can be effectively enhanced using a membrane reactor for the HI decomposition reaction (about 500 °C) for hydrogen production. The attachment of ceramic tubes, made of brittle materials, for hydrogen separation membranes to a tube plate via sealing parts is a critical aspect of this process. A quantitative procedure was specified to make an expanded graphite grand packing exhibit sealing performance. The applicability of the method was tested during 50 thermal cycles ranging between 25°C-450 °C and gas pressure of 0.3–0.9 MPa. The leakage flow rate using a dummy membrane tube and helium gas (a tracer gas) was approximately 2 × 10−5 Pa m3 s−1. This value is comparable to the detection limit of the standard bubble leak test, indicating the effectiveness of this sealing procedure. Furthermore, the leakage flow rate was proportional to the differential pressure applied to the sealing part, suggesting a molecular flow type. This allows for estimating the leakage flow rate by introducing the conductance of flow paths, formulated based on the molecular kinetic theory of gases. An estimation method of the leakage flow rate at any packing size and any pressure difference is proposed, which can help design future practical membrane reactors.
期刊介绍:
The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc.
The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.